Podocalyxin-Like Protein 1 Expression and Correlation with Clinical Characteristics in Epithelial Serous and Mucinous Ovarian Carcinoma and Tumor-Like Lesions

Feng Yea Ying Hua Caiyun Zhoub Yuting Hua Huaizeng Chena

aWomen’s Reproductive Health Key Laboratory of Zhejiang Province, and bDepartment of Pathology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, PR China

Key Words
Clinical characteristics · Epithelial ovarian carcinoma · PCLP1 · Podocalyxin-like protein 1

Abstract

Objective: Podocalyxin-like protein 1 (PCLP1) may be involved in the invasion and metastasis of tumors. However, to date the role of PCLP1 in the progression of epithelial ovarian carcinoma has not been investigated.

Methods: PCLP1 expression was examined by immunohistochemistry in 471 cases with various degrees of ovarian epithelial lesions, including 46 cases of normal ovarian epithelial tissue, 105 benign serous tumors, 74 borderline serous tumors, 94 serous carcinomas, 58 benign mucinous tumors, 50 borderline mucinous tumors and 44 mucinous carcinomas. Associations between PCLP1 expression and various clinical characteristics were analyzed.

Results: PCLP1 expression in mucinous carcinoma and borderline mucinous tumor tissues was found to be significantly lower than that observed in normal and benign mucinous tumor tissue. In addition, PCLP1 expression was significantly lower in mucinous carcinoma patients in advanced clinical stage and with poor differentiation of tumor cells. No positive results were observed in serous carcinomas.

Conclusions: Our findings suggest that PCLP1 may be involved in the progression of ovarian mucinous lesions but not in serous lesions. Low PCLP1 expression may be a potential predictor of a poor prognosis in mucinous carcinomas.

Introduction

Podocalyxin-like protein 1 (PCLP1), a type I transmembrane glycoprotein, is a member of the CD34 subfamily of sialomucins [1]. It has some structural and functional similarity with the L-selectin ligand CD34 [2] and endoglycan [3]. PCLP1 consists of an extracellular mucin-like domain with numerous sites for N- and O-linked glycosylation, a transmembrane domain and an intracellular domain possessing several potential phosphorylated sites. On the one hand, PCLP1 is described as an anti-adhesion molecule on the kidney podocyte, which maintains the integrity of the glomerular filtration slits by charge repulsion [4]. PCLP1 is also expressed in other cell types, including high endothelial venules [1] and early hematopoietic progenitors, precursors of hematopoietic stem cells [5]. On the other hand, PCLP1 expressing high endothelial venules acts as an adhesion molecule mediat-
ing L-selectin-dependent lymphocyte recruitment [2]. Subsequent studies have revealed that PCLP1 is also highly expressed in undifferentiated human embryonic stem cells [6] and is gradually lost during differentiation. Hence, PCLP1 seems to have quite different functions depending on the cell type.

It is well known that regulation of cell-cell adhesion is the molecular basis of a series of important physiological and pathological processes in normal tissue, playing a major role in tumor invasion and metastasis. It has been proposed that impaired cell-cell adhesion, which results in disruption of epithelial cell junctions, is thought to facilitate the emergence of carcinoma progression. Abnormal expression of key molecules involved in the regulation of cell-cell adhesion will affect tumor invasion and metastasis, which attracts a great deal of attention. Recent studies have shown that PCLP1 is expressed in hepatic and [7] prostate carcinomas [8], the majority of acute leukemias [9], thyroid carcinomas [10], invasive breast cancers [11], malignant astrocytic tumors [12], human embryonal carcinomas [13] and Wilms tumors [14]. Overexpression of PCLP1 on malignant cells results in metastatic spread due to its anti- and pro-adhesive properties.

Ovarian carcinoma is the deadliest of the gynecological malignancies because of its extremely rapid, extensive spread in the early stages. The biological characteristics of its extraovarian invasion and lymph node metastases, which are still poorly understood, are the major causes of clinical treatment failure for patients with ovarian carcinoma. The prognosis of patients with ovarian carcinoma is still not optimistic. Previous studies have demonstrated that many molecules involved in cell-cell adhesion are associated with the invasion and metastasis of ovarian carcinomas [15, 16]. Owing to the potential property of PCLP1 to be an L-selectin ligand, the expression pattern and function of PCLP1 may be important in the progression of ovarian carcinomas.

Epithelial ovarian carcinoma is the most common subtype of ovarian cancer that accounts for approximately 90% of all ovarian cancer cases. Hence, in this immunohistochemistry study, we assessed PCLP1 expression in various ovarian epithelial lesions to determine whether PCLP1 was involved in the progression of epithelial ovarian carcinoma. Furthermore, we analyzed the association between PCLP1 expression and various clinical characteristics to determine whether PCLP1 was a predictor of epithelial ovarian carcinoma progression.

Patients and Methods

Samples and Patients

The specimens (n = 471) were randomly obtained from patients in the Pathological Department of the Women’s Hospital, Zhejiang University School of Medicine (China), between March 1997 and May 2008. Tissue sampling was approved by the Medical Ethics Committee of the Affiliated Women’s Hospital, Zhejiang University School of Medicine, and written informed consent was obtained from all participants involved in this study. The samples consisted of 46 normal ovarian epithelia, 105 benign serous tumors, 74 borderline serous tumors, 94 serous carcinomas (including 6, 26, 58 and 4 in FIGO stage I, II, III and IV, respectively), 58 benign mucinous tumors, 50 borderline mucinous tumors and 44 mucinous carcinomas (including 20, 6 and 18 in FIGO stage I, II and III, respectively). None of the patients had received chemotherapy, immunotherapy or radiotherapy before specimen collection. The complete parameters were collected, including clinical stage, tumor cell differentiation, CA125 expression and patient age.

Ethical approval from the Medical Ethics Committee at the Cancer Center of the Affiliated Women’s Hospital for the collection or analysis of existing data was not required due to the retrospective design of the study, and, therefore, written consent given by the patients was not needed for their hospitalization and research. Furthermore, only anonymous data were retrieved from this database and the Ethics Committee waived the need for approval and consent.

Immunohistochemistry

All tissues were immediately fixed in 10% neutralized formalin for 24 h prior to processing in paraffin wax according to standard procedures. Dewaxing and rehydration of the tissue sections was performed according to standard procedures. Hydrated autoclave pretreatment was performed by boiling the samples in 10 mM citrate buffer (pH 6.0) for 2 min. Endogenous peroxidase activity was blocked with 3% hydrogen peroxide for 10 min at room temperature (RT). Slides were incubated with the primary monoclonal mouse antibody diluted 1:150 in Tris-buffered saline (50 mM Tris-HCl, 150 mM NaCl, pH 7.4) at RT for 1 h followed by incubation with Dako EnVisionTM peroxidase (Dako Diagnostica, Hamburg, Germany) for 30 min at RT. Finally, after adding 3,3’-diaminobenzidine tetrahydrochloride (Dako) for visualization, the slides were counterstained with Mayer’s hematoxylin, rinsed in tap water, dehydrated, placed in xylene and mounted at RT. Slides were washed three times for 3 min in PBS between each step. The mouse anti-human monoclonal antibody specific for PCLP1 was purchased from Santa Cruz (sc-23903; Santa Cruz, Calif., USA). Blank controls were obtained by replacing the primary antibody with normal mouse serum (Dingguo, Beijing, China).

Positive cells were indicated by the presence of brown staining in the cytoplasm and membrane. We counted the number of positively stained cells out of 100 in 10 random fields (×400 objective) and represented this number as the percentage of positive cells. The semiquantitative immunoreactive score was evaluated from 0 to 6 based on the percentage of positive cells and stain intensity. Percentage of positive cells was scored as follows: 0, <5% positive cells; 1, 5–25% positive cells; 2, 26–75% positive cells, and 3, >76% positive cells. Stain intensity was scored as follows: 0, weaker than...
Podocalyxin-Like Protein 1 Expression and Ovarian Carcinoma

Statistical Analysis

The SPSS 10.0 software package was used to perform all the statistical analyses. Differences in PCLP1 expression among the different groups were evaluated by the Kruskal-Wallis H and the Mann-Whitney U tests. Associations between PCLP1 expression and clinical pathologic factors were analyzed by the Spearman and Kendall tests. Values of $p < 0.05$ were considered to be statistically significant.

Results

Expression of PCLP1 in Various Degrees of Ovarian Epithelial Lesions

Moderate or strong PCLP1 expression was predominantly observed on the cell membrane and cytoplasm of normal ovarian epithelial and benign mucinous tumor tissues. In contrast, weak or moderate PCLP1 expression was observed in borderline mucinous tumor and mucinous carcinoma tissues (fig. 1). There were significant differences in PCLP1 expression among normal ovarian epithelia, benign mucinous tumor, borderline mucinous tumor and mucinous carcinoma groups ($p = 0.000$). PCLP1 expression was lower in mucinous carcinomas than in normal ($p = 0.009$) and benign mucinous tumor tissues ($p = 0.009$).

Our results also showed that moderate or strong PCLP1 expression was predominant on both the cell membrane and the cytoplasm in almost all ovarian serous epithelial lesions, including normal ovarian epithelial tissue, and benign serous tumor, borderline serous tumor and serous carcinoma tissues (fig. 2). The blank controls showed negative PCLP1 staining (data not shown). There was no significant difference in PCLP1 expression among all four groups of serous epithelial lesions (table 1).

Associations between PCLP1 Expression and Clinical Characteristics

Analysis of associations between PCLP1 expression and some important clinical pathological factors showed that PCLP1 expression was not correlated with clinical stages, CA125 expression levels or age in serous epithelial lesions (data not shown).

In contrast to the serous carcinoma patients, PCLP1 expression was significantly lower with advanced clinical stage ($p = 0.019$) and poor differentiation of tumor cells ($p = 0.004$) in 44 mucinous carcinoma patients (table 2). PCLP1 expression was not correlated with either CA125 expression levels or age in mucinous epithelial lesions.

<table>
<thead>
<tr>
<th>Table 1. PCLP1 expression in different ovarian epithelial lesions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Normal</td>
</tr>
<tr>
<td>Benign</td>
</tr>
<tr>
<td>Borderline</td>
</tr>
<tr>
<td>Carcinoma</td>
</tr>
</tbody>
</table>

* $\chi^2 = 2.262$, ** $\chi^2 = 21.203$ (p value of four groups). a $Z = -1.295$, normal vs. benign serous tumor; b $Z = -1.206$, benign serous tumor vs. borderline serous tumor; c $Z = -0.229$, normal vs. borderline serous tumor; d $Z = -0.611$, borderline serous tumor vs. serous carcinoma; e $Z = -0.765$, normal vs. serous carcinoma; f $Z = -0.647$, benign serous tumor vs. serous carcinoma; g $Z = -0.221$, normal vs. benign mucinous tumor; h $Z = -2.612$, benign mucinous tumor vs. serous carcinoma; i $Z = -2.629$, normal vs. borderline mucinous tumor; j $Z = -0.747$, borderline mucinous tumor vs. mucinous carcinoma; k $Z = -3.802$, normal vs. mucinous carcinoma; l $Z = -3.668$, benign mucinous tumor vs. mucinous carcinoma.

buff; 1, yellow; 2, brown, and 3, dark brown. The final score was a combination of the two scores as follows: – (0), + (1–2), ++ (3–4) and +++ (5–6).
Discussion

The human PCLP1 gene is located at chromosome 7q32–q33, encoding for a protein of approximate 528 amino acids [17]. Structurally similar to CD34, PCLP1 consists of an extracellular mucin-like domain with numerous sites for N- and O-linked glycosylation, a transmembrane domain and an intracellular domain possessing several potential phosphorylated sites. PCLP1 is normally expressed on kidney podocytes, vascular endothelia, hematopoietic progenitors and a subset of neurons [18].
The role of PCLP1 in the cell-cell adhesion process has been examined in many studies, focusing on its effects on invasion and metastasis of malignant tumors. Aberrant PCLP1 overexpression has recently been detected in a range of cancers by several studies. However, the results of our study showed that PCLP1 was abundantly expressed in normal ovarian epithelial cells, and expression tended to decrease from normal to malignant tissues. In mucinous carcinoma and borderline tumor tissues, PCLP1 expression was significantly lower than in normal and benign mucinous tumors. An unexpected finding was that PCLP1 expression did not differ from normal to serous carcinomas. Since PCLP1 is involved in the regulation of cell-cell adhesion, our findings suggest that PCLP1 may play a role in the progression of ovarian mucinous but not serous lesions. Low PCLP1 expression in mucinous carcinomas compared to normal ovarian epithelial cells suggests that PCLP1 may have potential as a molecular marker for the detection of ovarian mucinous carcinomas.

PCLP1 overexpression in kidney epithelial cells modifies tight cell junctions and decreases junction-dependent transepithelial resistance because of its anti-adhesive properties [19]. Actually, most of the studies have found the same results when PCLP1 was overexpressed in carcinoma cells. Since the degree and mechanism of junction disruption varies widely with tumor subtype, clinical stage and tumor differentiation [11], it is reasonable to believe that a downregulation of PCLP1 might also play a role in junction disruption. Pro-adhesive or other unknown functions of PCLP1 may be reduced in ovarian mucinous cystadenocarcinoma progression. In addition, we found no significant difference in PCLP1 expression between borderline mucinous tumor and mucinous carcinoma tissues, suggesting there may be a turning point from benign mucinous cystadenoma to borderline lesions.

Ovarian cancer has become a fatal threat to women’s lives and health, and its mortality ranks first among gynecological malignancies [20]. There are various subtypes of epithelial ovarian cancer of morphological heterogeneity. A recent study suggested that epithelial ovarian cancer is not merely a single disease but rather a collection of several diseases. The same molecule has different expression profiles as well as different values depending on the various histological types. This means that PCLP1 may not participate in the progression of serous carcinomas, which differ markedly from mucinous carcinomas.

Previous studies have demonstrated that PCLP1 has almost the opposite functions of adhesion depending on the cell type. To date, no consensus was reached about the detailed functions of PCLP1, especially in the field of carcinoma progression. Some researchers reported that overexpression of PCLP1 in malignant cells results in metastatic spread via both its anti- and pro-adhesive properties. In theory, the anti-adhesive role of PCLP1 could cause cell shedding from primary tumors and their entry into the circulatory system. Simultaneously, the pro-adhesive properties of PCLP1 could result in secondary tumor colony formation via its selectin ligand activity associated with selectin-expressing host cells [21]. Recent evidence indicates that PCLP1 is an E- and L-selectin ligand on LS174T colon carcinoma cells [22], which may explain the metastatic potential of PCLP1 overexpression on many types of carcinoma cells. However, this hypoth-

Table 2. The association of PCLP1 expression with clinical stages and tumor cell differentiations

<table>
<thead>
<tr>
<th></th>
<th>Total (n = 94)</th>
<th>Serous carcinoma (n = 44)</th>
<th>Correlation coefficient</th>
<th>p</th>
<th>Mucoinous carcinoma (n = 4)</th>
<th>Correlation coefficient</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0.19 0.055</td>
<td>20</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>II</td>
<td>26</td>
<td>0</td>
<td>1</td>
<td>0 2.0</td>
<td>6</td>
<td>1</td>
<td>-0.383 0.004</td>
</tr>
<tr>
<td>III</td>
<td>58</td>
<td>0</td>
<td>0</td>
<td>6 4.5</td>
<td>18</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>IV</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1 3.0</td>
<td>8</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Differentiation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well</td>
<td>8</td>
<td>0</td>
<td>1</td>
<td>6 4.5</td>
<td>18</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Moderating</td>
<td>34</td>
<td>1</td>
<td>0</td>
<td>6 27</td>
<td>18</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Poor</td>
<td>52</td>
<td>0</td>
<td>7</td>
<td>45</td>
<td>8</td>
<td>3</td>
<td>2 1</td>
</tr>
</tbody>
</table>

Podocalyxin-Like Protein 1 Expression and Ovarian Carcinoma

Pathobiology 2012;79:307–313

311
esis has to be confirmed by further studies. Interestingly, aberrant PCLP1 expression is often associated with the most aggressive cancers and probably involved in metastasis. Especially the anti-adhesive properties of PCLP1 have been widely regarded as the dominant contribution of this molecule to metastatic progression [11]. Moreover, PCLP1 also acts as an important marker which can be recognized by a cytotoxic antibody to selectively bind and kill cancer cells [23]. PCLP1 overexpression is an independent predictor of breast cancer progression [11]. In our study, PCLP1 expression was relatively decreased in mucinous carcinomas, too. Probably PCLP1-induced junction disruption is more significant in mucinous carcinomas. The effect of low PCLP1 expression on carcinoma cells requires further investigation. Hence, an in-depth investigation on the functions of PCLP1 may help to improve cancer treatment.

Some clinical characteristics that are usually examined to follow up the progression of carcinomas may be able to predict the prognosis of patients, which is very important in clinical treatment. In our study, we showed that PCLP1 expression is significantly decreased in mucinous carcinoma patients in advanced clinical stage with poor differentiation. Consequently, PCLP1 may be involved in the development and progression from normal ovarian tissue to mucinous carcinoma tissue. PCLP1 expression was decreased in higher clinical stages, which also confirms that the protein plays an important role in the regulation of tumor cell differentiation, which is in agreement with results in breast carcinomas and pancreatic ductal adenocarcinomas. PCLP1 was also reported as a marker of poorly differentiated tumors [24]. In our study in a medium-sized study cohort (n = 44), low PCLP1 expression was very likely to be a prognostic predictor of mucinous carcinoma, but PCLP1 expression did not correlate with CA125 expression levels in these carcinomas. This may be explained by the fact that CA125 itself is not a specific indicator of mucinous carcinoma progression. Furthermore, PCLP1 expression was neither correlated with age in general nor with any clinical characteristic in serous ovarian lesions. Possibly PCLP1 does not participate in the progression of serous carcinomas.

In summary, our study showed that PCLP1 expression decreases from normal to malignant lesions suggesting that PCLP1 may play a role in the progression of ovarian mucinous but not serous lesions. The negative correlations of PCLP1 expression with clinical stage and tumor cell differentiation indicate that PCLP1 is a potential predictor of a poor prognosis in mucinous carcinoma.

Acknowledgments

This work was supported by a grant from the Zhejiang Natural Science Foundation of China (Y204049, Y207162 and Y2110200) and the National Nature Science foundation of China (No. 30973380).

References

Podocalyxin-like protein 1 expression and ovarian carcinoma:

