A Critical Role for the Inducible Proteasomal Subunits LMP7 and MECL1 in Cytokine Production by Activated Murine Splenocytes
Rockwell, C.E. (East Lansing, Mich.); Monaco, J.J. (Cincinnati, Ohio); Qureshi, N. (Kansas City, Mo.)

Endogenous Opioid and Cannabinoid Mechanisms Are Involved in the Analgesic Effects of Celecoxib in the Central Nervous System
Rezende, R.M.; Paiva-Lima, P.; Dos Reis, W.G.P.; Camêlo, V.M.; Faraco, A. (Belo Horizonte); Baklhe, Y.S. (London); Francischi, J.N. (Belo Horizonte)

Angiotensin-(1–7) Induces Peripheral Antinociception through Mas Receptor Activation in an Opioid-Independent Pathway

The Two Different Effects of the Potential Neuroprotective Compound Minocycline on AMPA-Type Glutamate Receptors
Jin, L.-J. (Shanghai); Schlesinger, F. (Hannover); Guan, Q. (Shanghai); Song, Y.-P. (Hannover); Nie, Z.-Y. (Shanghai)

Modulation of Recombinant GABA Receptors by Neurosteroid Dehydroepiandrosterone Sulfate

Pharmacokinetics of Lacosamide in Healthy Korean Male Volunteers
Kim, S.E.; Gu, N.; Kim, B.-H. (Seoul); Fitchner, A.; Elishoff, J.-P.; Cawello, W. (Monheim am Rhein); Jang, I.-J.; Yu, K.-S. (Seoul)

A Randomised, Two-Period, Cross-Over, Open-Label Study to Evaluate the Pharmacokinetic Profiles of Single Doses of Two Different Flurbiprofen 8.75-mg Lozenges in Healthy Volunteers
Matzneller, P.; Burian, A. (Vienna); Martin, W. (Ulm); Annoni, O. (Mendrisio); Lauro, V.; Tacchi, R. (Bologna); Brunner, M.; Zeitlinger, M. (Vienna)

Pharmacokinetic, Distribution, Metabolism, and Excretion of (Z)-2-Amino-1,5-Dihydro-1-Methyl-5-[4-(Mesyl)Benzyldiene]-4H-Imidazol-4-One Mesilate (ZLJ-601) in Sprague-Dawley Rats

Simultaneous Determination of a Novel Diphenylpiperazine Calcium Channel Blocker and Its Four Metabolites in Rat Liver Microsomes by Liquid Chromatography Tandem Mass Spectrometry

Anti-Inflammatory Gallic Acid and Wedelolactone Are G Protein-Coupled Receptor-35 Agonists
Deng, H.; Fang, Y. (Corning, N.Y.)

Quercetin Induces Rapid eNOS Phosphorylation and Vasodilation by an Akt-Independent and PKA-Dependent Mechanism
Li, P.-G. (Beijing); Sun, L.; Han, X.; Ling, S.; Gan, W.; Xu, J.-W. (Shanghai)

Genistein Attenuated Allergic Airway Inflammation by Modulating the Transcription Factors T-bet, GATA-3 and STAT-6 in a Murine Model of Asthma
Short Communication

145 Endogenous Endomorphin-2 Contributes to Spinal \(\kappa \)-Opioid Antinociception
Shimoyama, M.; Toyama, S. (Ichihara/Chiba); Tagaito, Y. (Ichihara); Shimoyama, N. (Ichihara/Ibaraki)

Contributions on Cannabinoids

149 Topical and Systemic Cannabidiol Improves Trinitrobenzene Sulfonic Acid Colitis in Mice
Schicho, R. (Graz); Storr, M. (Munich)

179 Off-Target Cannabinoid Effects Mediated by GPR55
Henstridge, C.M. (Budapest)

126 Erratum
Pharmacology
International Journal of Experimental and Clinical Pharmacology

Founded 1959 as 'Medicina Experimentalis'; continued 1965–1967 as 'Medicina et Pharmacologia Experimentalis'
Founder: R. Domenjoz (1959–1977);

Editors
J. Donnerer, Graz
M.L. Billingsley, Hershey, Pa.
K. Takeuchi, Kyoto

Editorial Board
C. Antoniou, Athens
J. Ahrens, Hannover
L.Z. Benet, San Francisco, Calif.
A. Breckenridge, London
K.K. Burkhart, Silver Spring, Md.
F. Colpaert, Castres
G. Coruzzi, Parma
S. Dhein, Leipzig
T.L. Goodfriend, Madison, Wisc.
L.S. Harris, Richmond, Va.
M. Hirafuji, Ishikari-Tobetsu
M.D. Hollenberg, Calgary, Alta.
M. Inui, Yamaguchi
K. Ishii, Yamagata
C. Joukhadar, Boston, Mass.
Y. Kamisaki, Osaka
N. Kaplowitz, Los Angeles, Calif.
A. Kawabata, Osaka
A. Levitzki, Jerusalem
B.R. Lucchesi, Ann Arbor, Mich.
W.E. Müller, Frankfurt am Main
T. Narahashi, Chicago, Ill.
N.H. Neff, Columbus, Ohio
J.P. O’Callaghan, Morgantown, W. Va.
K. Pennypacker, Tampa, Fla.
C. Scarpignato, Parma
C.D. Smith, Charlestown, S.C.
E. Taira, Iwate
C. Zeng, Chongqing City
Submission
The journal publishes articles dealing with all aspects of experimental and clinical pharmacology. Papers dealing with mechanistic aspects at a molecular level are particularly encouraged. They can be full articles as well as short communications of investigative findings. Reviews, comments and perspective notes on timely topics are specifically welcome. We consider investigations dealing with biological extracts or with phytopharmaceutical preparations as outside the scope of our journal. Only papers written in English are considered and should be submitted using the online submission website at:

www.karger.com/pha

or sent as e-mail attachment (the preferred word-processing package is MS-Word) to the Editorial Office:

pha@karger.ch

Prof. J. Donnerer
S. Karger AG
Editorial Office ‘Pharmacology’
PO. Box
CH – 4009 Basel (Switzerland)
Tel. +41 61 306 1356
Fax +41 61 306 1434

Conditions
All manuscripts are subject to editorial review. Manuscripts which do not properly consider ethical issues for humans or animals will not be accepted for publication. In the ‘Methods’ section, it is recommended to mention the approval given by the responsible authorities. Manuscripts are received with the explicit understanding that they are not under simultaneous consideration by any other publication. Submission of an article for publication implies the transfer of the copyright from the author to the publisher upon acceptance. Accepted papers become the permanent property of ‘Pharmacology’ and may not be reproduced by any means, in whole or in part, without the written consent of the publisher. It is the author’s responsibility to obtain permission to reproduce illustrations, tables, etc. from other publications.

Conflicts of Interest
Authors are required to disclose any sponsorship or funding arrangements relating to their research and all authors should disclose any possible conflicts of interest. Conflict of interest statements will be published at the end of the article.

Ethics
Published research must comply with the guidelines for human studies and animal welfare regulations. Authors should state that subjects have given their informed consent and that the study protocol has been approved by the institute’s committee on human research. Further, they should also state that animal experiments conform to institutional standards.

Arrangement
Title page: The first page of each paper should indicate the title, the authors’ names, the institute where the work was conducted, and a short title for use as running head.

Full address: The exact postal address of the corresponding author complete with postal code must be given at the bottom of the title page. Please also supply phone and fax numbers, as well as e-mail address.

Key words: Please supply 3–10 key words in English that reflect the content of the paper.

Abstract: Each paper needs an abstract of up to 10 lines.

Drug names: Authors are requested to use International non-proprietary names definitely recommended or, if no final recommendation has been made, proposed by the World Health Organisation (WHO). The use of laboratory code numbers necessitates prior explanation by chemical name or structural formula.

Footnotes: Avoid footnotes.

Tables and illustrations: Tables and illustrations (both numbered in Arabic numerals) should be prepared on separate pages. Tables require a heading and figures a legend, also prepared on a separate page. Due to technical reasons, figures with a screen background should not be submitted. When possible, group several illustrations in one block for reproduction (max. size 180 × 225 mm) or provide crop marks. Each illustration must be labeled with its number and the first author’s name. The final resolution for b/w half-tone and color illustrations must be 300 dpi after scaling. Line drawings require 800–1,200 dpi. Figures from a page dot-line library may be included in a final document file but submitted separately (for detailed instructions, see http://www.karger.com/pha).

Color illustrations
Online edition: Color illustrations are reproduced free of charge. In the print version, the illustrations are reproduced in black and white. Please avoid referring to the colors in the text and figure legends.

Print edition: Up to 6 color illustrations per page can be integrated within the text at CHF 800.– per page.

References: In the text identify references by Arabic numerals [in square brackets]. Material submitted for publication but not yet accepted should be noted as ‘unpublished data’ and not be included in the reference list. The list of references should include only those publications which are cited in the text. Do not alphabetize; number references in the order in which they are first mentioned in the text. The surnames of the authors followed by initials should be given. There should be no punctuation other than a comma to separate the authors. Preferably, please cite all authors. Abbreviate journal names according to the Index Medicus system. Also see International Committee of Medical Journal Editors: Uniform requirements for manuscripts submitted to biomedical journals. (www.icmje.org).

Examples

Reference Management Software: Use of EndNote is recommended for easy management and formatting of citations and reference lists.

Digital Object Identifier (DOI)
S. Karger Publishers supports DOIs as unique identifiers for articles. A DOI number will be printed on the title page of each article. DOIs can be useful in the future for identifying and citing articles published online without volume or issue information. More information can be found at www.doi.org.

Supplementary Material
Supplementary material is restricted to additional data that are not necessary for the scientific integrity and conclusions of the paper. Please note that all supplementary files will undergo editorial review and should be submitted together with the original manuscript. The Editors reserve the right to limit the scope and length of the supplementary material. Supplementary material must meet production quality standards for Web publication without the need for any modification or editing. In general, supplementary files should not exceed 10 MB in size. All figures and tables should have titles and legends and all files should be supplied separately and named clearly. Acceptable files and formats are: Word or PDF files, Excel spreadsheets (only if the data cannot be converted properly to a PDF file), and video files (.mov, .avi, .mpg).

Author’s Choice™
Karger’s Author’s Choice™ service broadens the reach of your article and gives all authors worldwide free and full access for reading, downloading and printing at www.karger.com. The option is available for a one-time fee of CHF 300.–, which is a permissible cost in grant allocation. More information can be found at www.karger.com/authors_choice.

NIH-Funded Research
The U.S. National Institutes of Health (NIH) mandates under the NIH Public Access Policy that final, peer-reviewed manuscripts appear in its digital database within 12 months of the official publication date. As a service to authors, Karger submits the final version of your article on your behalf to PubMed Central. For those selecting our premium Author’s Choice™ service, we will send your article immediately upon publishing, accelerating the accessibility of your work without the usual embargo. More details on NIH’s Public Access Policy is available at http://publicaccess.nih.gov/policy.htm

Self-Archiving
Karger permits authors to archive their pre-prints (i.e., pre-refereeing) or post-prints (i.e. final draft post-refereeing) on their personal or institution’s servers, provided the following conditions are met: Articles may not be used for commercial purposes, must be linked to the publisher’s version, and must acknowledge the publisher’s copyright. Authors selecting Karger’s Author’s Choice™ fee service, are also permitted to archive the final, published version of their article, which includes copy-editing and design improvements as well as citation links.

Page Charges
There are no page charges for papers of 3 or fewer printed pages (including tables, illustrations and references). Each additional complete or partial page is charged to the author at CHF 325.–. The allotted size of a paper is equal to approx. 14 manuscript pages (including tables, illustrations and references).

Proofs
Unless indicated otherwise, proofs are sent to the corresponding author and should be returned with the least possible delay. Alterations other than the correction of printer’s errors are charged to the author.

Reprints
Order form and price list is sent with the pdf proofs. Orders submitted after the issue is printed are subject to considerable higher prices.
Abbreviations and Symbols

Abbreviations and Terminology
The IUB Recommendations should be followed, as far as possible, for the nomenclature of the enzymes (Enzyme Nomenclature, Academic Press, New York, 1978). Thus the enzymes must be identified by their corresponding Enzyme Commission name and number. Recommended trivial names are accepted. Non-standard abbreviations should be explained before use. For the expression of catalytic activities the IFCC Methods for the measurement of catalytic concentration of enzymes (e.g. Clin Chim Acta 1979:98:163–174F) should be followed.
The catalytic activity of an enzyme can be either reported in nkat or mkat (1 kat, KATAL = 1 mol.s⁻¹) or as μmol.min⁻¹ under stated conditions (temperature, pH, kind of buffer, ionic strength, etc.). Catalytic activity concentration should be given as nkat.l⁻¹ or μkat.l⁻¹, or as μmol.min⁻¹.l⁻¹ or, when referring the activity per mass of protein or another reference basis, by an appropriate mass unit (kg, g, mg). Enzyme assays in tissues, that are considered to measure (relative) concentrations, can be confirmed by other assays only in relation to some standard. Authors are therefore encouraged to give, as part of the method, the activity in some generally available standard or in some common reference tissue such as adult male rat liver.
For the other quantities the Recommendations of the Section of Clinical Chemistry of the International Union of Pure and Applied Chemistry (IUPAC) and of the International Federation of Clinical Chemistry (IFCC) should be considered (Quantities and Units in Clinical Chemistry. Pure Appl Chem 1974;37:517,547). The abbreviations and most common units are listed as follows:

<table>
<thead>
<tr>
<th>Standard Abbreviations of Chemical Compound</th>
<th>(which do not need to be explained)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMP, ADP, ATP</td>
<td>Adenosine-5’-mono, di- and triphosphate</td>
</tr>
<tr>
<td>CoA</td>
<td>Coenzyme A</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonucleic acid</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EGTA</td>
<td>Ethyleneglycol-bis-(β-aminoethylether)-N,N,N’,N’-tetraacetic acid</td>
</tr>
<tr>
<td>FAD</td>
<td>Flavin adenine dinucleotide</td>
</tr>
<tr>
<td>FMN</td>
<td>Flavin mononucleotide</td>
</tr>
<tr>
<td>GABA</td>
<td>γ-Aminobutyric acid</td>
</tr>
<tr>
<td>HEPES</td>
<td>4-(2-Hydroxyethyl)-1-piperazine-ethanesulphonic acid</td>
</tr>
<tr>
<td>5-HT</td>
<td>5-Hydroxytryptamine</td>
</tr>
<tr>
<td>NAD (NADH)</td>
<td>Nicotinamide adenine dinucleotide (reduced form)</td>
</tr>
<tr>
<td>NADP (NADPH)</td>
<td>Nicotinamide adenine dinucleotide phosphate (reduced form)</td>
</tr>
<tr>
<td>P,</td>
<td>Inorganic phosphate</td>
</tr>
<tr>
<td>PP,</td>
<td>Inorganic pyrophosphate</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>UMP, UDP, UTP</td>
<td>Uridine-5-mono-, di- and triphosphate</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium dodecyl sulphate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Common units</th>
<th>Recommended</th>
<th>Not recommended</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>m</td>
<td>cm</td>
</tr>
<tr>
<td></td>
<td>mm</td>
<td>μm, μ</td>
</tr>
<tr>
<td></td>
<td>mm</td>
<td>μm, μ</td>
</tr>
<tr>
<td></td>
<td>cm</td>
<td>μm, μ</td>
</tr>
<tr>
<td></td>
<td>mm</td>
<td>μm, μ</td>
</tr>
<tr>
<td></td>
<td>cm</td>
<td>μm, μ</td>
</tr>
<tr>
<td></td>
<td>mm</td>
<td>μm, μ</td>
</tr>
<tr>
<td></td>
<td>cm</td>
<td>μm, μ</td>
</tr>
<tr>
<td></td>
<td>mm</td>
<td>μm, μ</td>
</tr>
<tr>
<td>Area</td>
<td>m²</td>
<td>cm²</td>
</tr>
<tr>
<td></td>
<td>mm²</td>
<td>μm²</td>
</tr>
<tr>
<td></td>
<td>cm²</td>
<td>μm²</td>
</tr>
<tr>
<td></td>
<td>mm²</td>
<td>μm²</td>
</tr>
<tr>
<td>Volume</td>
<td>m³</td>
<td>l, dm³</td>
</tr>
<tr>
<td></td>
<td>ml</td>
<td>μl, mm³</td>
</tr>
<tr>
<td></td>
<td>pl</td>
<td>μμl</td>
</tr>
<tr>
<td></td>
<td>l</td>
<td>cc, ccm</td>
</tr>
<tr>
<td></td>
<td>ml</td>
<td>λ, ul</td>
</tr>
<tr>
<td>Mass</td>
<td>kg</td>
<td>Kg</td>
</tr>
<tr>
<td></td>
<td>g</td>
<td>gr, gm, gms, GRM</td>
</tr>
<tr>
<td></td>
<td>mg</td>
<td>mgm, mgms</td>
</tr>
<tr>
<td></td>
<td>μg</td>
<td>γ-g</td>
</tr>
<tr>
<td></td>
<td>ng</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pG</td>
<td>μg, ung</td>
</tr>
<tr>
<td></td>
<td>pl</td>
<td>μg, uug</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(oz, lb, etc.)</td>
</tr>
<tr>
<td>Mass concentration</td>
<td>kg/l</td>
<td>g/ml</td>
</tr>
<tr>
<td></td>
<td>g/l</td>
<td>%, G %, % (w/v)</td>
</tr>
<tr>
<td></td>
<td>mg/l</td>
<td>%, G %, % (w/v)</td>
</tr>
<tr>
<td></td>
<td>μg/l</td>
<td>mg %, mg % (w/v)</td>
</tr>
<tr>
<td></td>
<td>mg/ml</td>
<td>(mg/100 ml)</td>
</tr>
<tr>
<td></td>
<td>μμg/ml</td>
<td>p.p.m., p.p.m.</td>
</tr>
<tr>
<td>Molar concentration</td>
<td>mol/l</td>
<td>μmol/l</td>
</tr>
<tr>
<td></td>
<td>mmol/l</td>
<td>μmol/l</td>
</tr>
<tr>
<td></td>
<td>mmol/l</td>
<td>μmol/l</td>
</tr>
<tr>
<td>Particle concentration (e.g. blood cells or bacteria)</td>
<td>10⁻⁷ L, × 10⁻³ L⁻¹</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10⁻⁷ L, × 10⁻³ L⁻¹</td>
<td>1/ml, ml⁻¹</td>
</tr>
<tr>
<td>Temperature (thermodynamic temperature, Celsius temperature)</td>
<td>K, °C</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>a</td>
<td>yr</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>da</td>
</tr>
<tr>
<td></td>
<td>h</td>
<td>h</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>min.</td>
</tr>
<tr>
<td></td>
<td>s</td>
<td>sec</td>
</tr>
<tr>
<td>(Mass) Density</td>
<td>kg/l</td>
<td></td>
</tr>
</tbody>
</table>
Pharmacology is an international forum to present and discuss current perspectives in drug research. The journal communicates research in basic and clinical pharmacology and related fields. It covers biochemical pharmacology, molecular pharmacology, immunopharmacology, drug metabolism, pharmacogenetics, analytical toxicology, neuropsychopharmacology, pharmacokinetics and clinical pharmacology. In addition to original papers and short communications of novel therapeutic agents, the journal contains reviews, comments and perspective notes, research communications of novel therapeutic agents are encouraged.

Selected contributions
Proteomic Approach to the Study of Statin Pleiotropy in Kidney Transplant Patients: Pérez, V.; Navarro-Muñoz, M. (Barcelona); Mas, S. (Madrid); Bayés, B.; Pastor, M.C.; Martínez-Cáceres, E.; Lauzurica, R. (Barcelona); Egido, J. (Madrid); Romero, R. (Barcelona)
A Meta-Analyses of Placebo-Controlled Clinical Trials Assessing the Efficacy and Safety of Incretin-Based Medications in Patients with Type 2 Diabetes: Fakhoury, W.K.H.; LeReun, C.; Wright, D. (London)
Personalized Prognosis and Diagnosis of Type 2 Diabetes — Vision or Fiction?: Müller, G. (Munich)
CRTH2 and D-Type Prostanoid Receptor Antagonists as Novel Therapeutic Agents for Inflammatory Diseases: Schuligoi, R.; Sturm, E.; Luschnig, P.; Konya, V.; Philippose, S.; Sedék, M.; Waldhoer, M.; Peskar, B.A.; Heinemann, A. (Graz)
Cannabinoids Inhibit Cellular Respiration of Human Oral Cancer Cells: Whyte, D.A. (Syracuse, N.Y.); Al-Hammadi, S.; Bahlaj, G. (J Av); Brown, O.M. (Syracuse, N.Y.); Penevsky, H.S. (New Jersey, N.J.); Souid, A.-K. (Al Ain)

More information at www.karger.com/pha
- Pay-per-View and Subscriber Access to Full Text
- Full Table of Contents
- Full Editorial Board
- Free Abstracts and Selected Articles
- Online Sample Issue
- Subscription Details
- Free Alert Service
- Online Library Recommendation
Endothelin is a 21-amino acid peptide that exerts uniquely potent and long-lasting effects on the kidney, including regulation of water and electrolyte excretion, blood pressure, cell growth, inflammation and fibrosis. During the past 10 years, the field has evolved rapidly; we are now uncovering the potential importance of endothelin receptor antagonists (ERAs) in the treatment of kidney disease. This book reviews experimental concepts, preclinical studies and clinical data which form the basis of our current understanding of the association between endothelin and kidney disease. Acclaimed experts in pharmacology, molecular biology, physiology, cardiovascular medicine, and nephrology have contributed timely reviews dealing with renal pharmacology and physiology of endothelin, the role of endothelin in renal disease development and ERAs in preclinical studies, and the current state of clinical development of ERA therapy in renal medicine.

The publication at hand will be a valuable reference source for nephrologists, internists and other healthcare professionals, renal physiologists and molecular biologists, post-doctoral researchers and students in the life sciences, as well as for scientists and decision makers in drug research and development.

Contents

Preface

Molecular Biology and Physiology of Endothelin in the Kidney
Pharmacology of Renal Endothelin Receptors:
 - Davenport, A.P.; Maguire, J.J.
 - Renal Function and Blood Pressure: Molecular Insights into the Biology of Endothelin-1:
 - Vignon-Zellweger, N.; Heiden, S.; Emoto, N.
 - Endothelin and the Renal Vasculature:
 - Guan, Z.; Inscho, E.W.
 - Endothelin Signaling and Actions in the Renal Mesangium:
 - Sorokin, A.
 - Regulation of Sodium Transport in the Proximal Tubule by Endothelin:
 - Zhang, Y.; Zeng, C.
 - Role of Endothelin in Thick Ascending Limb Sodium Chloride Transport:
 - Ramsay, V.D.; Cabral, P.D.; Garvin, J.L.
 - Endothelins and Kidney Acidification:
 - Wesson, D.E.
 - Endothelin and Collecting Duct Sodium and Water Transport:
 - Kohan, D.E.
 - Endothelin Control of Renal Sympathetic Nerve Activity:
 - Kopp, U.C.

Pathophysiology: Endothelin and Renal Disease Mechanisms

Endothelin and Podocyte Injury in Chronic Kidney Disease: Fligny, C.; Barton, M.; Tharaux, P.-L.
Endothelin in Diabetic Kidney Disease: Benz, K.; Amann, K.
Endothelin, Nitric Oxide, and Reactive Oxygen Species in Diabetic Kidney Disease: Pollock, J.S.; Pollock, D.M.
Endothelin in Renal Inflammation and Hypertension: Saleh, M.A.; Pollock, D.M.
Endothelin in Chronic Proteinuric Kidney Disease: Gagliardini, E.; Buelli, S.; Benigni, A.
Endothelin in Renal Injury due to Sickle Cell Disease: Tharaux, P.-L.
Endothelin in Polycystic Kidney Disease: Chang, M.-Y.; Ong, A.C.M

Clinical Studies of Endothelin Antagonism in Renal Disease Patients

Endothelin Antagonism and Reversal of Proteinuric Renal Disease in Humans: Barton, M.
Endothelin Antagonism in Patients with Resistant Hypertension and Hypertension Nephropathy: Lazich, I.; Bakris, G.L.
Endothelin Receptor Blockade in Diabetic Nephropathy: Rabelink, T.J.; Kohan, D.E.
Endothelin Antagonism in Patients with Nondiabetic Chronic Kidney Disease: Dhaun, N.; Goddard, J.; Webb, D.J.
Endothelin Antagonists in Clinical Trials: Lessons Learned: Barton, M.; Kohan, D.E.

www.karger.com/conep