Radionuclide Detection of Multiple Soft Tissue Metastases of Osteosarcoma Masquerading as Bone Metastasis

Mustafa Takesh a Henry Zoller a Husam Ghazi b Majdi Zein c Hussam Sahli c

a Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany; b Department of Internal Medicine and c Department of Nuclear Medicine, University Hospital, Damascus, Syria

Introduction

Bone scan is of a great value in the evaluation of bone status. Sometimes however, its role can be extended to encompass soft tissue status in certain tumors like osteosarcoma. Unusual sites of soft tissue metastasis had been reported in osteosarcoma including the pleura, pericardium, kidney, adrenal glands and nonregional lymph nodes [1]. These metastases are normally characterized with positive 99mTc methylene diphosphonate (MDP) uptake. In the presence of multifocal soft tissue metastases especially in the thorax, accompanying multiple bone metastases, the former may be overlooked or misdiagnosed as bone involvement in conventional bone scans, mainly due to its limited spatial resolution.

Considering the proven alteration of prognosis in the presence of regional nodal metastases [2], the demarcation of nonbone metastases could be of prognostic value. We report a case of osteosarcoma with multiple bone metastases in addition to multiple soft tissue metastases observed on bone scan.
Case Report

A 15-year-old patient was referred to our department to undergo bone scanning for restaging of osteosarcoma, 1.5 years after transfemoral amputation of the right limb. The bone scan revealed tumor recurrence in the distal left tibia, multiple bone metastases, and other focal hot spots similar to bone metastasis and located in the chest wall and neck region (fig. 1). These focal hot spots were first evaluated as bone metastases; however, the extraosseous sites led us to consider additional radiological studies.

Computed tomography of the chest showed that the hotspots on bone scan were multiple soft tissue/visceral metastases including: adrenal gland, chest wall, axillary lymph nodes, shoulder muscles, cervical lymph nodes and mesenteric node (fig. 1). Nevertheless, the detection of soft tissue metastases was not of significant outcome in this patient with end-stage osteosarcoma.

Discussion

Extraosseous or soft tissue uptake of 99mTc diphosphonates is maybe not an unusual finding on skeletal scintigrams in nuclear medicine practice. In the literature, there are many reports describing extraosseous uptakes in a wide variety of benign and malignant disorders such as osteosarcoma. The incidental detection of pulmonary metastases from osteosarcoma using bone scan was frequently reported [3, 4]. Soft tissue is the next popular site after the lungs for metastasis in osteosarcoma, whereas the lymphatic spread is rare [3–5]. In our case nearly all types of uncommon sites of metastases including visceral, lymph node and skeletal muscle metastases were visu-
alized in the bone scan, whereas there was no evidence of lung metastases. This is rarely seen in daily clinical practice, according to the spread pattern of osteosarcoma described by Jeffree et al. [6].

Thus, this case described an unusual metastatic pattern, in which the osteosarcoma preferred the soft tissue rather than the lung (the most common metastatic site) [6, 7]. Karacalioglu et al. [7] mentioned also that extrapulmonary metastatic recurrence is rare.

Pathology and 99mTc-MDP Uptake

Osteosarcoma had been pathologically divided into three groups depending on the predominant type of matrix (osteoid, fibrous or chondroid matrix) [1]. The presence of mineralized osteoid matrix may explain the osteosarcoma tissue affinity for 99mTc-MDP. The same applies to the metastases which may contain a sufficient amount of mineralized osteoid matrix [8, 9].

Since the scintigraphic appearance of this tumor varies depending on the osteoblastic activity, it is not always possible to detect soft tissue metastases with a low level of osteoblastic activity making the bone scan invalid in evaluating the soft tissue status.

The described soft tissue metastases were initially assessed incorrectly as bone metastasis. Two factors contributed in the false interpretation of these findings; first they share with the simultaneous bone metastases the same appearance, and the poor spatial resolution of bone scans affects negatively the distinction between them.

However, CT of the thorax which was performed principally to exclude lung metastases in the framework of restaging was helpful in showing their nonbone origins. This emphasized the importance of assessing the bone scan findings taking into account the other radiological modalities in particular in the presence of equivocal findings. To distinguish the soft tissue metastases from bone metastases is maybe not of critical clinical relevance for the management in this case, but may have deleterious consequences in other cases of less extended metastatic disease.

Conclusion

This report emphasized the importance of bone scans in detecting soft tissue metastasis in tumors characterized by calcified metastases such as osteosarcoma. On the one hand, this case shows the benefit of the awareness of other radiological modalities for the precise interpretation of bone scan findings in particular in distinguishing soft tissue metastases from coincident bone metastases.

References

