Login to MyKarger

New to MyKarger? Click here to sign up.



Login with Facebook

Forgot your password?

Authors, Editors, Reviewers

For Manuscript Submission, Check or Review Login please go to Submission Websites List.

Submission Websites List

Institutional Login
(Shibboleth or Open Athens)

For the academic login, please select your country in the dropdown list. You will be redirected to verify your credentials.

Ann Nutr Metab 2012;61:199–206
(DOI:10.1159/000343104)

The History of the Discovery of Vitamin D and Its Daughter Steroid Hormone

Norman A.W.

Author affiliations

Department of Biochemistry and Division of Biomedical Sciences, University of California Riverside, Riverside, Calif., USA

Corresponding Author

Prof. Anthony W. Norman

Department of Biochemistry and Division of Biomedical Sciences

University of California Riverside

Riverside, CA 92521 (USA)

E-Mail Anthony.norman@ucr.edu

Do you have an account?

Login Information





Contact Information











I have read the Karger Terms and Conditions and agree.



Abstract

It is largely through historical accident in the interval of 1920–1940 that vitamin D3 became classified as a vitamin rather than as a steroid hormone. The formal definition of a vitamin is that it is a trace dietary constituent required to produce the normal function of a physiological process or processes. The emphasis here is on trace and the fact that the vitamin must be supplied regularly in the diet; this implies that the body is unable to metabolically synthesize the vitamin in question. However, the ultraviolet exposure of 7-dehydrocholesterol present in the skin results in the photochemical production of vitamin D3. Thus, vitamin D3 becomes a true vitamin only when the animal or human does not have regular access to sunlight or ultraviolet light. Under normal physiological circumstances, all mammals, including humans, can generate, via ultraviolet exposure of 7-dehydrocholesterol present in the skin, adequate quantities of vitamin D3 to meet their nutritionally defined requirements. There is a vibrant historical record beginning in 1650 and culminating in 1963 concerned with the determination of the chemical structures of vitamin D3 and vitamin D2. A surprising aspect concerning vitamin D3 is that it is itself biologically inert. There are no known essential biological actions or contributions that rely specifically on the molecule vitamin D3. While chemists had certainly appreciated the strong structural similarity between the vitamins D and other steroids, this correlation was never widely acknowledged in the biological, clinical, or nutritional sciences until 1965–1970. The biological role of vitamin D3 is to serve as a substrate for the liver 25-hydroxylase which produces 25-hydroxyvitamin D3 [25(OH)D3]. 25(OH)D3 in turn serves as the substrate for the kidney proximal tubule 25(OH)D3-1α-hydroxylase enzyme which produces the steroid hormone 1α,25(OH)2-vitamin D3 [1α,25(OH)2D3].

© 2012 S. Karger AG, Basel


References

  1. Whistler D: De morbo puerili Anglorum, quem patrio idiomate indigenae vocant The Rickets. Leiden, ex. Off. W.C. Boxii, 1645.
  2. Glisson F: A treatise of the rickets being a disease common to children. Cambridge, Cambridge University, 1660.
  3. Trousseau A, Lasègue C: Du rachitisme et de l’osteomalacie comparés. Arch Gen Med 1849;19:257.
  4. Pommer G: Untersuchungen über Osteomalacie und Rachitis. Leipzig, F.C.W. Vogel, 1885.
  5. Schütte D: Beobachtungen über den Nutzen des Berger Leberthrans (Oleum jecoris Asseli, von Gadus asellus L.). Arch med Erfahr 1824;2:79–92.
  6. Palm TA: The geographical distribution and etiology of rickets. Practitioner 1890;45:270–279.
  7. Hopkins FG: The analyst and the medical man. Analyst 1906;31:385–397.
    External Resources
  8. Hess AF: Rickets including osteomalacia and tetany. Philadelphia, Lea and Febiger, 1929.
  9. Mellanby E: An experimental investigation on rickets. Lancet 1919;1:407–412.
  10. Mellanby E: The part played by an ‘accessory factor’ in the production of experimental rickets. J Physiol 1918–1919;52:xi–xii, liii–liv.
  11. Mellanby E: Experimental rickets. Medical Research Council Special Report Series No. 61. London, His Majesty’s Stationery Office, 1921.
  12. Platt BS: Sir Edward Mellanby, 1884–1955: the man, research worker, and statesman. Annu Rev Biochem 1956;25:1–28.
  13. Huldschinsky K: Heilung von Rachitis durch künstliche Höhensonne. Dtsch med Wschr 1919;45:712–713.
  14. McCollum EV, Simmonds N, Becker JE, Shipley PG: Studies on experimental rickets. XXI. An experimental demonstration of the existence of a vitamin which promotes calcium deposition. J Biol Chem 1922;53:293–312.
  15. Goldblatt H: A study of the relation of the quantity of fat-soluble organic factor in the diet to the degree of calcification of the bones and the development of experimental rickets in rats. Biochem J 1923;17:298–326.
  16. Goldblatt H, Soames KN: A study of rats on a normal diet irradiated daily by the mercury vapor quartz lamp or kept in darkness. Biochem J 1923;17:294–297.
  17. Steenbock H, Black A: Fat-soluble vitamins. XVII. The induction of growth-promoting and calcifying properties in a ration by exposure to ultra-violet light. J Biol Chem 1924;61:405–422.
  18. Steenbock H, Black A, Nelson MT, Hoppert CA, Riising BM: Fat-soluble vitamins. XXIII. The induction of growth-promoting and calcifying properties in fats and their unsaponifiable constituents by exposure to light. Methods Enzymol 1925;64:263–298.
  19. Hess AF, Weinstock M: The antirachitic value of irradiated cholesterol and phytosterol. III. Evidence of chemical change as shown by absorption spectra. Methods Enzymol 1925;64:193–201.
  20. Hess AF, Weinstock M: The antirachitic value of irradiated cholesterol and phytosterol. II. Further evidence of change in biological activity. Methods Enzymol 1925;64:181–191.
  21. Windaus A, Linsert O, Luttringhaus A, Weidlinch G: Über das krystallisierte Vitamin D2. Justus Liebigs Ann Chem 1932;492:226–231.
  22. Angus TC, Askew FA, Bourdillon RB, Bruce HM, Callow R, Fischmann C, Philpot L, Webster TA: A crystalline antirachitic substance. Proc Royal Soc Ser B 1931;108:340–359.
  23. Windaus A, Schenck F, von Werder F: Über das antirachitisch wirksame Bestrahlungs-produkt aus 7-Dehydrocholesterin. Hoppe-Seylers Ztschr physiol Chem 1936;241:100–103.
  24. Brockmann H: Die Isolierung des antirachitischen Vitamins aus Thunfischleberöl. Hoppe-Seylers Ztschr physiol Chem 1936;241:104–115.
  25. Crowfoot D, Dunitz JD: Structure of calciferol. Nature 1948;162:608–609.
  26. Crowfoot-Hodgkin DS, Rummer BM, Dunitz JD, Trueblood KN: The crystal structure of a calciferol derivative. J Chem Soc 1963;4945–4956.
    External Resources
  27. Norman AW: The mode of action of vitamin D. Biol Rev 1968;43:97–137.
  28. Myrtle JF, Haussler MR, Norman AW: Evidence for the biologically active form of cholecalciferol in the intestine (Note: This paper was subsequently selected as a ‘Nutrition Classic’ by Nutrition Reviews 1991;49:302–305). J Biol Chem 1970;245:1190–1196.
  29. Kodicek E, Lawson DEM, Wilson PW: Biological activity of a polar metabolite of vitamin D. Nature 1970;228:763.
  30. Haussler MR, Myrtle JF, Norman AW: The association of a metabolite of vitamin D3 with intestinal mucosa chromatin, in vivo. J Biol Chem 1968;243:4055–4064.
  31. Norman AW, Myrtle JF, Midgett RJ, Nowicki HG, Williams V, Popjak G: 1,25-Dihydroxycholecalciferol: identification of the proposed active form of vitamin D3 in the intestine. Science 1971;173:51–54.
  32. Lawson DEM, Fraser DR, Kodicek E, Morris HR, Williams DH: Identification of 1,25-dihydroxycholecalciferol, a new kidney hormone controlling calcium metabolism. Nature 1971;230:228–230.
  33. Holick MF, Schnoes HK, DeLuca HF: Identification of 1,25-dihydroxycholecalciferol, a form of vitamin D3 metabolically active in the intestine. Proc Natl Acad Sci USA 1971;68:803–804.
  34. Haussler MR, Norman AW: Chromosomal receptor for a vitamin D metabolite. Proc Natl Acad Sci USA 1969;62:155–162.
  35. Haussler MR, Norman AW: Chromosomal receptor for a vitamin D metabolite: a nutrition classic. Nutr Rev 1985;43:181–183.
    External Resources
  36. Hunziker W, Walters MR, Bishop JE, Norman AW: Studies on the mode of action of calciferol XXXVIII: effect of vitamin D status on the equilibrium between occupied and unoccupied 1,25-dihydroxyvitamin D receptors. J Clin Invest 1982;69:826–834.
  37. Brickman AS, Coburn JW, Norman AW: Action of 1,25-dihydroxycholecalciferol, a potent, kidney-produced metabolite of vitamin D3, in uremic man. N Engl J Med 1972;287:891–895.
  38. Brickman AS, Coburn JW, Massry SG, Norman AW: 1,25-Dihydroxyvitamin D3 in normal man and patients with renal failure. Ann Intern Med 1974;80:161–168.
  39. Haussler MR, Jurutka PW, Mizwicki M, Norman AW: Vitamin D receptor (VDR)-mediated actions of 1α,25(OH)2 vitamin D3: genomic and non-genomic mechanisms. Best Pract Res Clin Endocrinol Metab 2011;25:543–559.
  40. Norman AW, Bouillon R: Vitamin D nutritional policy needs a vision for the future. Exp Biol Med 2010;235:1034–1045.
  41. Bouillon R, Carmeliet G, Verlinden L, van Etten E, Verstuyf A, Luderer HF, Lieben L, Mathieu C, Demay M: Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr Rev 2008;29:726–776.
  42. Norman AW, Frankel BJ, Heldt AM, Grodsky GM: Vitamin D deficiency inhibits pancreatic secretion of insulin. Science 1980;209:823–825.
  43. Xiang W, Kong J, Chen S, Cao LP, Qiao G, Zheng W, Liu W, Li X, Gardner DG, Li YC: Cardiac hypertrophy in vitamin D receptor knockout mice: role of the systemic and cardiac renin-angiotensin systems. Am J Physiol Endocrinol Metab 2004;288:E125–E132.
    External Resources
  44. Schauber J, Dorschner RA, Coda AB, Buchau AS, Liu PT, Kiken D, Helfrich YR, Kang S, Elalieh HZ, Steinmeyer A, Zugel U, Bikle DD, Modlin RL, Gallo RL: Injury enhances TLR2 function and antimicrobial peptide expression through a vitamin D-dependent mechanism. J Clin Invest 2007;117:803–811.
  45. Endo I, Inoue D, Mitsui T, Umaki Y, Akaike M, Yoshizawa T, Kato S, Matsumoto T: Deletion of vitamin D receptor gene in mice results in abnormal skeletal muscle development with deregulated expression of myoregulatory transcription factors. Endocrinology 2003;144:5138–5144.
  46. Nobelstiftelsen: Les Prix Nobel en 1905. Stockholm, Imprimerie Royale, P.A. Norstedt & Söner, 1906.
  47. Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR, Ochoa MT, Schauber J, Wu K, Meinken C, Kamen DL, Wagner M, Bals R, Steinmeyer A, Zugel U, Gallo RL, Eisenberg D, Hewison M, Hollis BW, Adams JS, Bloom BR, Modlin RL: Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 2006;311:1770–1773.
  48. Armas LAG, Hollis BW, Heaney RP: Vitamin D2 is much less effective than vitamin D3 in humans. J Clin Endocrinol Metab 2004;89:5387–5391.
  49. Heaney RP, Recker RR, Grote J, Horst RL, Armas LA: Vitamin D3 is more potent than vitamin D2 in humans. J Clin End Metab 2011;93:447–452.
    External Resources
  50. Wolpowitz D, Gilchrest BA: The vitamin D questions: how much do you need and how should you get it? J Am Acad Dermatol 2006;54:301–317.
  51. Vieth R: Vitamin D supplementation, 25-hydroxyvitamin D concentrations, and safety. Am J Clin Nutr 1999;69:842–856.

Article / Publication Details

First-Page Preview
Abstract of Paper

Published online: November 26, 2012

Number of Print Pages: 8
Number of Figures: 3
Number of Tables: 0

ISSN: 0250-6807 (Print)
eISSN: 1421-9697 (Online)

For additional information: https://www.karger.com/ANM