Gamma Knife Radiosurgery for Brain Vascular Malformations
Gamma Knife Radiosurgery for Brain Vascular Malformations

Volume Editors

Ajay Niranjan Pittsburgh, Pa.
Hideyuki Kano Pittsburgh, Pa.
L. Dade Lunsford Pittsburgh, Pa.

60 figures, 25 in color, and 28 tables, 2013
Contents

VII Series Editor’s Note
Lunsford, L.D. (Pittsburgh, Pa.)

1 **A Brief History of Arteriovenous Malformation Radiosurgery**
 Niranjan, A.; Lunsford, L.D. (Pittsburgh, Pa.)

5 **Natural History of Cerebral Arteriovenous Malformations and the Risk of Hemorrhage after Radiosurgery**
 Yen, C.-P.; Schlesinger, D.; Sheehan, J.P. (Charlottesville, Va.)

22 **The Technical Evolution of Gamma Knife Radiosurgery for Arteriovenous Malformations**

35 **Targeting and Conformality in Arteriovenous Malformation Radiosurgery**
 Paddick, I. (London/Sheffield/Tilburg); Motti, E. (Milano/Ravenna)

49 **Dose Selection in Stereotactic Radiosurgery**

58 **Development and Testing of a Radiosurgery-Based Arteriovenous Malformation Grading System**
 Pollock, B.E. (Rochester, Minn.)

67 **Radiosurgery for Brainstem Arteriovenous Malformation**

73 **Multistaged Volumetric Management of Large Arteriovenous Malformations**

81 **Endovascular Embolization in Combination with Radiosurgery for Treatment of Arteriovenous Malformations**
 Miller, R.A.; Jankowitz, B. (Pittsburgh, Pa.)

89 **Stereotactic Radiosurgery after Embolization for Arteriovenous Malformations**

97 **Long-Term Side Effects of Radiosurgery for Arteriovenous Malformations**
 Yamamoto, M.; Kawabe, T.; Barford, B.E. (Ibaraki)
Management of Adverse Radiation Effects after Radiosurgery for Arteriovenous Malformations
(Pittsburgh, Pa.)

Morphological Observations in Brain Arteriovenous Malformations after Gamma Knife Radiosurgery
Szeifert, G.T. (Budapest); Levivier, M.; Lorenzoni, J. (Brussels); Nyáry, I.; Major, O. (Budapest);
Kemeny, A.A. (Sheffield)

Stereotactic Radiosurgery Guideline for the Management of Patients with Intracranial Arteriovenous Malformations
Niranjan, A.; Lunsford, L.D. (Pittsburgh, Pa.)

Cavernous Malformations and Hemorrhage Risk
Kondziolka, D.; Monaco, E.A., III; Lunsford, L.D. (Pittsburgh, Pa.)

Radiosurgery of Brain Cavernomas – Long-Term Results
Liscak, R. (Prague)

Radiosurgical Treatment for Epilepsy Associated with Cavernomas
Lévêque, M.; Caron, R.; Bartolomei, F.; Régis, J. (Marseille)

Stereotactic Radiosurgery Guidelines for the Management of Patients with Intracranial Cavernous Malformations
Niranjan, A.; Lunsford, L.D. (Pittsburgh, Pa.)

Intracranial Dural Arteriovenous Fistulas: Natural History and Rationale for Treatment with Stereotactic Radiosurgery
Pan, D.H.-C.; Wu, H.-M. (Taipei); Kuo, Y.-H. (Taipei/Albany, N.Y.); Chung, W.-Y.; Lee, C.-C.; Guo, W.-Y. (Taipei)

Stereotactic Radiosurgery with or without Embolization for Intracranial Dural Arteriovenous Fistulas

Dural Arteriovenous Fistulas and the Role of Gamma Knife Stereotactic Radiosurgery: The Stockholm Experience
Söderman, M.; Dodoo, E. (Stockholm); Karlsson, B. (Singapore)

Stereotactic Radiosurgery Guidelines for the Management of Patients with Intracranial Dural Arteriovenous Fistulas
Niranjan, A.; Lunsford, L.D. (Pittsburgh, Pa.)

Author Index

Subject Index
In the 40 years since radiosurgery was introduced as an option for the management of vascular malformations, an enormous volume of clinical outcome research has substantiated its role in properly selected patients. Across the world, various technologies are available to perform radiosurgery. The unifying feature of each technology is its ability to conformally deliver a high dose of radiation to a small intracranial volume with precision and selectivity (rapid fall-off of the dose in adjacent normal structures). The Gamma Knife® represents the technology most commonly used and is currently available at more than 300 medical centers.

At our own center, we have recently completed a long-term analysis of almost 1,000 patients who had Gamma Knife radiosurgery for arteriovenous malformations (AVMs) during a 20-year interval. Like other centers, many of whom are represented by reports in this volume, the role of radiosurgery expanded to include carefully selected cavernous malformations and dural vascular malformations. I believe that the current volume of Progress in Neurological Surgery will provide additional data that will further define the long-term benefit and risks of radiosurgery for these often complex vascular disorders.

I hope that you will enjoy reading the work of the superb international group of individuals who work with the Gamma Knife in the management of AVMs.

L. Dade Lunsford, MD, FACS
Pittsburgh, Pa.