Comparison of Gastric Relaxation and Sensory Functions between Functional Dyspepsia and Healthy Subjects Using Novel Drinking-Ultrasound Test

Tamotsu Hata, Mototsugu Kato, Takahiko Kudo, Mutsumi Nishida, Urara Nishida, Aki Imai, Takeshi Yoshida, Jyojyo Hirota, Go Kamada, Shouko Ono, Manabu Nakagawa, Soichi Nakagawa, Yuichi Shimizu, Hiroshi Takeda, Masahiro Asaka

Department of Gastroenterology, Hokkaido University Graduate School of Medicine, and Division of Endoscopy and Department of Clinical Laboratory, Support of Clinical Practice, Hokkaido University Hospital, Sapporo, Japan

Abstract

Background: Functional dyspepsia (FD) is a heterogeneous disease characterized by various upper abdominal symptoms. The major mechanism of FD includes impaired fundic accommodation, delayed gastric emptying and visceral hypersensitivity. We developed a novel drinking-ultrasound test to combine a drink test with ultrasonography to assess gastric motility and sensory function of FD patients.

Method: Subjects were 20 healthy volunteers and 26 successive FD patients according to the Rome III criteria. The subjects ingested 200 ml of water at 2-min intervals 4 times (total 800 ml) through a straw. The maximum cross section of the proximal stomach was visualized before water intake, after each water intake, and 5 and 10 min after the completion of drinking using extracorporeal ultrasonography. Abdominal symptoms were evaluated using the visual analog scale (VAS) a total of 5 times.

Results: The mean cross-sectional area of the fornix after 800 ml of water intake was significantly lower in the FD group compared with the control group. In the FD group, marked abdominal symptoms developed immediately after initiation of water intake, and VAS score differed significantly (p < 0.01) between the control and FD groups at each time point.

Conclusion: We developed the novel drinking-ultrasound test which revealed abnormalities in gastric accommodation and sensation in patients with FD compared with healthy controls. This approach can be readily performed and allows the simultaneous evaluation of gastric accommodation, emptying and sensation.

Introduction

Functional dyspepsia (FD) is a clinical condition characterized by various upper abdominal symptoms, such as postprandial fullness, early satiation and epigastric pain, or burning marked by the absence of organic, systemic or metabolic disease that would explain the symptoms. The Rome III committee proposed new diagnostic criteria for...
functional gastrointestinal disorders including FD [1]. The Rome III criteria divided FD into two categories according to predominant dyspeptic symptoms: postprandial distress syndrome and epigastric pain syndrome. However, the two subtypes overlap greatly. The heterogeneity of FD symptoms depends on different pathophysiological features. The major mechanism of FD symptoms includes impaired fundic accommodation, delayed gastric emptying and visceral hypersensitivity, as well as other complicating factors [2, 3]. It seems likely that an understanding of pathophysiology in different types of FD patients is required for different management approaches.

Tests of gastric motility and sensory function are available in clinical practice. Gastric barostat is regarded as the gold standard for the measurement of gastric accommodation [4, 5]. However, it is not widely used because the procedure is extremely invasive. Imaging methods such as single photon emission computer tomography, magnetic resonance imaging or scintigraphy have also been occasionally reported [6–9]. These tests cannot be used extensively because of radiation exposure and long examination time. On the other hand, ultrasonography, which is safe, noninvasive and inexpensive, allows the direct observation of gastric movements [10–12]. In addition, a drink test has recently been developed for the evaluation of sensory function [13–15]. We combined a similar drink test of our own design with ultrasonography to exclude organic abdominal disease. This study was approved by the Ethics Committee of Hokkaido University Hospital and written informed consent was obtained from all subjects.

Basic Procedure
A drinking-ultrasonography test was performed after subjects had fasted for at least 6 h. Subjects were supine and ingested water through a straw that was placed at facial height so that they raised themselves minimally. Commercially available water in PET bottles (Alkali Ion Water®; Kirin, Tokyo, Japan) and graduated plastic cups were used. During the drinking period, the subjects ingested 200 ml of water at 2-min intervals 4 times (total 800 ml). When they felt unable to ingest more, the test was discontinued. Examination of the emptying period was conducted 5 and 10 min after the completion of drinking 800 ml (or discontinuation), at which point the test was concluded (fig. 1).

Evaluation of the Gastric Cross-Sectional Area
All ultrasonographic examinations were performed using an Aplio™ XV (Toshiba, Tokyo, Japan) and a 3.5-MHz convex-type probe (375BT) by one ultrasonography technician with more than 20 years of experience. The cross section of the proximal stomach was visualized by extracorporeal ultrasonography via the 10th intercostal space using the spleen as an echo window. The maximum cross section of the proximal stomach was visualized before water intake, after each water intake at 2-min intervals, and 5 and 10 min after the completion of the drinking test. After the image was frozen the mucosal surface of the gastric lumen was traced using the ultrasonography system and the cross-sectional area was calculated. Static and animated images were stored on hard disk.

Evaluation of Symptoms
During the drinking period, abdominal symptoms were evaluated using the visual analog scale (VAS) a total of 5 times, as well as before the test and immediately after each ingestion of water. Abdominal symptoms before the test were used as the baseline. Subjects were asked about difficulty in drinking due to symptoms such as abdominal fullness and epigastric pain. During the test they filled out a questionnaire by themselves using a numerical scale from 0 (no difficulty) to 10 (most difficult).

 Subjects and Methods
 Subjects
Twenty healthy volunteers (HVs) and 26 successive subjects diagnosed with FD according to the Rome III criteria at Hokkaido University Hospital between August 2006 and August 2007 were enrolled in this study. FD patients had had one or more of the following symptoms in the preceding 3 months: postprandial fullness, early satiation, epigastric pain or burning. All subjects underwent upper gastrointestinal endoscopy and abdominal ultrasonography to exclude organic abdominal disease. This study was approved by the Ethics Committee of Hokkaido University Hospital and written informed consent was obtained from all subjects.

Subjects and Methods

<table>
<thead>
<tr>
<th></th>
<th>HVs (n = 20)</th>
<th>FD (n = 26)</th>
<th>Statistical significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male/female</td>
<td>10/10</td>
<td>5/21</td>
<td>n.s.</td>
</tr>
<tr>
<td>Age, years</td>
<td>37.0 ± 10.3 (24–53)</td>
<td>38.6 ± 10.3 (21–59)</td>
<td>n.s.</td>
</tr>
<tr>
<td>BMI, years</td>
<td>21.4 ± 3.3</td>
<td>20.9 ± 5.0</td>
<td>n.s.</td>
</tr>
<tr>
<td>Height, cm</td>
<td>166.0 ± 8.6</td>
<td>160.2 ± 7.6</td>
<td>n.s.</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>60.4 ± 12.2</td>
<td>53.6 ± 10.6</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

Table 1. Baseline characteristics of HVs and patients with FD
Statistical Analysis
All values are expressed as the mean ± SD. Differences between the two groups were analyzed by Student’s t test and p values of less than 0.05 were considered to indicate statistical significance. All data were statistically analyzed using SPSS software (version 11.0 for Microsoft Windows).

Results

Baseline Characteristics
The healthy control group consisted of 20 subjects (10 males and 10 females) with a mean age of 37.0 (24–53) years and a mean BMI of 21.4. The FD group consisted of 26 patients (5 males and 21 females) with a mean age of 38.6 (21–59) years and a mean BMI of 20.9 (table 1).

Gastric Accommodation
The mean cross-sectional area of the fornix after 800 ml of water intake was significantly lower in the FD group (75.2 ± 19.0 cm²) compared with the control group (98.5 ± 23.7 cm²; fig. 2).

Gastric Emptying
The percentages of the cross-sectional area of the fornix after 5 and 10 min were 81.7 ± 14.8% and 69.6 ± 15.7%, respectively, in the control group and 86.0 ± 25.2% and 77.5 ± 28.4%, respectively, in the FD group. Although no significant differences were observed (p = 0.272) between the two groups, the mean value of the cross-sectional area of the fornix in the FD group was higher than that in the control group, suggesting delayed emptying in FD (fig. 3).
Gastric Sensation

In the FD group, marked symptoms such as abdominal fullness and epigastric pain developed immediately after the initiation of water intake, and the VAS score tended to be high compared with the HVs. The VAS score differed significantly ($p < 0.01$) between the control and FD groups at each time point (after 200 ml of water intake, 0.5 ± 1.5 vs. 2.8 ± 3.5; after 400 ml of water intake, 1.4 ± 1.9 vs. 4.2 ± 3.3; after 600 ml of water intake, 2.7 ± 2.3 vs. 6.2 ± 3.2; after 800 ml of water intake, 4.2 ± 2.8 vs. 7.0 ± 3.3, respectively), suggesting hyperesthesia in the FD group (fig. 4).

Discussion

We developed the drinking-ultrasonography test and evaluated the pathological condition of patients with FD in comparison with HVs. In this drinking-ultrasonography test a drink load is given at equal intervals, the cross-sectional area of the fornix is measured and symptoms are verbally assessed at each interval. This approach allows the simultaneous evaluation of gastric relaxation, sensory function and gastric emptying. It seems that the greatest benefit of the drinking-ultrasonography test is its noninvasive nature, ease of use, tolerability and short duration (under 20 min) for patients. Recently, minimally invasive tests of gastric motility and sensory function have been reported, such as ultrasonography, 13C-octanoic acid urea breath test and drink test. These tests are able to evaluate gastric relaxation, gastric emptying, gastroduodenal reflux or visceral hypersensitivity. However, these minimally invasive tests do not detect simultaneously both gastric motor disorder and sensory disorder. The drinking-ultrasonography test does not require radiation, expensive chemical substances or unusual equipment. In terms of money and time-saving, this novel test is useful for routine examination of dyspeptic patients.

To develop the drinking-ultrasonography test, we examined adequate interval time, tidal volume and total volume of water intake. Initially, 100 ml of water intake at 1-min intervals was considered based on the study by Boeckxstaens et al. [13]. However, at these intervals the time available for ultrasonography was very short and in-
The incidence of delayed gastric emptying is about 25% extensively studied. Recent studies have shown that the distension failure has been considered the main pathology of FD and has been suggested to be caused by excessive excitation of fundic stretch receptors [22]. Delayed gastric emptying has long been considered the main pathology of FD and has been extensively studied. Recent studies have shown that the incidence of delayed gastric emptying is about 25% [23, 24], and many studies have suggested no association between delayed gastric emptying and specific symptoms. In the present study, slightly delayed gastric emptying was observed in the FD group, but there were no significant differences between the two groups.

The pathophysiological mechanisms of FD include motility disorders, perception disorders, acid hypersensitivity, psychological factors, Helicobacter pylori infection, duodenal dysfunction and abnormalities within the brain-gut axis. In this study, we did not check the H. pylori status of enrolled subjects. The reported prevalence of H. pylori infection in FD patients varies from 39 to 87% [25]. Although H. pylori infection is thought to be a cause of FD symptoms, no association between H. pylori positivity and symptom pattern, gastric emptying rate, gastric accommodation or sensitivity to distension in FD patients has been found [16]. Also, consistent results on the response of FD symptoms to H. pylori eradication therapy have not been obtained [26, 27]. Further study is necessary and will be interesting to clarify the relationship between the pathophysiological classification using this novel test and the strategy of FD treatment.

Conclusion

The drinking-ultrasonography test revealed abnormalities in gastric accommodation and sensation in patients with FD compared with HVs. This test can be readily performed and allows the simultaneous evaluation of gastric relaxation, emptying and sensation.

Disclosure Statement

The authors declare that no financial or other conflicts of interest exist in relation to the content of this article.

References

