Reincarnating the Oxford Cingulectomy in the Epoch of Stereotaxy and Resurrecting Lesions in the Era of Deep Brain Stimulation

Erlick A.C. Pereira, Tipu Z. Aziz
Oxford Functional Neurosurgery and Experimental Neurology Group, Nuffield Department of Surgical Sciences, University of Oxford, and Department of Neurological Surgery, The West Wing, John Radcliffe Hospital, Oxford, UK

Sir Hugh Cairns, the first Nuffield Professor of Surgery and founder of neurosurgery at Oxford, one of Cushing’s three trainees alongside Jefferson and Dott who established neurosurgery in the UK, pioneered a handful of enduring clinical contributions [1–3]. Well known are his introduction of wartime field neurosurgical hospitals, crash helmets for motorcyclists, antibiotics in neurosurgery and the ‘Oxford’ hemispherectomy for epilepsy [4–7]. Less publicized is his cingulectomy for psychiatric disorders. Cairns epitomized by freehand craniotomy and interhemispheric approach the anterior 4 cm of rostral cingulate gyrus (Brodman’s area 24). He published long-term outcomes from 24 of 29 treated patients with psychiatric disorders, showing improvements in many without detrimental changes in behaviour and finding it least effective in psychoses and most useful in ‘certain types of mental illness marked by obsessions, tension and anxiety, in which the basic personality is preserved’ [6].

Obsessive-compulsive disorder (OCD) can be debilitating and neurosurgical treatments for refractory patients have evolved to stereotactic lesional and now deep brain stimulation (DBS) therapies, most focused upon either the anterior cingulate cortex or anterior limb of the internal capsule. A wealth of animal experiments and human neuroimaging evidence have continued to implicate both in underlying aberrant neural circuitry since the time of first Papez’s then MacLean’s conceptualizations of the limbic system [8, 9].

Here, Zhang et al. [10] present results of 7 patients with refractory OCD treated by combined bilateral anterior cingulotomy and anterior capsulotomy, with 5 improving after 1 year. Using a cingulate target much more anterior than other series [11], follow-up was short, assessment potentially unblinded and no comparison made to control groups receiving one lesional target alone. Nevertheless, the outcomes appear to improve promisingly the adage in neurosurgery for psychiatric disorders from ‘one third improved, one third unchanged and one third worse’ to ‘two thirds improved’ by combining the lesions, implying a synergistic behavioural effect from their disruption of aberrant limbic circuitry. Their results are best contextualized firstly by the enormous 800-patient experience over 4 decades from the Massachusetts General Hospital by Ballantine et al. [12] then Cosgrove and Rauch [13]. Of Ballantine’s 198-patient retrospective case series, 62% improved at a mean follow-up of 8.6 years, with 56% of OCD patients improving [12].

The status of lesioning in movement disorders was well summarized by Blomstedt and Hariz [23] in this journal: ‘Unilateral ablative surgery may not harbour more postoperative complications or side effects than DBS. Some of the side effects following lesioning are transient and most but not all DBS side effects are reversible. In the Vim DBS is safer than lesioning, while in the pallidum, unilateral lesions are well tolerated.’
A quarter of a century of contemporary DBS has begun to clarify its limitations and opportunities for neurosurgical alternatives, as happened for the levodopa that heralded it. While narrative reviews of lesioning exist [24, 25], a systematic appraisal of the contemporary literature for deep brain ablation in the era of DBS is desirable. Psychiatric disorders, cancer pain and selected patients with movement disorders remain appropriate indications. Furthermore, we predict a resurgence in ablative surgery driven by the encouraging renaissance of stereotactic and functional neurosurgery in resource-limited, developing world settings.

References