Renal and Extrarenal Effects of Gum Arabic (Acacia Senegal) – What Can be Learned from Animal Experiments?

Omaima Nasir

Department of Medical Laboratory, Faculty of Medical Applied Sciences, Turabah, Taif University

Key Words
Chronic renal disease • Plasma phosphate concentration • Proteinuria • Obesity • Diabetes • Colon carcinoma • Inflammation

Abstract
Gum arabic (GA), a water-soluble dietary fiber rich in Ca\(^2+\), Mg\(^2+\) and K\(^+\), is used in Middle Eastern countries for the treatment of patients with chronic kidney disease. Recent animal experiments shed some light into mechanisms involved in the therapeutic action of GA. According to experiments in healthy mice, GA treatment increases creatinine clearance, enhances renal excretion of ADH, Mg\(^2+\) and Ca\(^2+\), decreases plasma phosphate concentration as well as urinary excretion of phosphate and Na\(^+\). In diabetic mice GA treatment increases urinary Ca\(^2+\) excretion, and decreases plasma phosphate concentration, plasma urea concentration, urinary flow rate, natriuresis, phosphaturia, glucosuria, proteinuria as well as blood pressure. Extrarenal effects of GA treatment in mice include decreased expression of intestinal Na\(^+\) coupled glucose carrier SGLT1 with subsequent delay of electrogenic intestinal glucose transport, glucose-induced hyperglycemia, hyperinsulinemia and body weight gain. GA treatment decreases colonic transcription of the angiogenetic factors angiogenin 1, angiogenin 3 and angiogenin 4, of CD38 antigen, aquaporin4, interleukin18, vav-3-oncogene, y^-amino acid-transporter, sulfatase1, ubiquitinD and chemokine ligand5. Moreover, GA treatment decreases angiogenin and ß-catenin protein expression. Accordingly, GA treatment counteracts the development of tumors following chemical cancerogenesis. In mouse dendritic cells, antigen-presenting cells linking innate and adaptive immunity, GA treatment modifies maturation and cytokine release. GA treatment further favourably influences the course of murine malaria. The effects of GA treatment on plasma phosphate concentration, blood pressure and proteinuria may prove beneficial in chronic renal failure and diabetic nephropathy. The effect of GA on intestinal glucose transport may be useful in the prophylaxis and treatment of obesity and diabetes, the effect of GA on angiogenin and ß-catenin expression could be exploited for the prophylaxis against colon carcinoma, the effects of GA on angiogenin expression and dendritic cells may be useful in the treatment of inflammatory disease and malaria.
Introduction

Gum Arabic (GA), a water-soluble dietary fiber [1], is a polysaccharide with branched chains of (1-3) linked β-D-galactopyranosyl units containing α-L-arabinofuranosyl, α-L-rhamnopyranosyl, β-D-glucuronopyranosyl and 4-O-methyl-β-D-glucuronopyranosyl units [2]. GA is rich in Ca²⁺, K⁺ and Mg²⁺ [2]. GA is fabricated from the dried gummy exudates from the stems and branches of *Acacia senegal* [3]. In the colon GA is degraded by microorganisms to short chain fatty acids [4]. According to the US Food and Drug Administration GA is one of the safest dietary fibers [5]. GA is in Middle Eastern countries used for the treatment of patients with chronic kidney disease and end-stage renal disease [6]. Efficacy of GA has, however, been a matter of controversy [7]. Earlier studies yielded evidence for and against an antioxidant effect of GA as well as protective effects in experimental hepatic-, renal- and cardiac toxicity [7]. GA has been shown to decrease blood pressure [8], to decrease plasma cholesterol concentrations in rats [7], to foster dental remineralization [7], to display antimicrobial activity [7] and to stimulate intestinal absorption thus counteracting diarrhoea [7].

The present review discusses more recent animal studies revealing some renal and extrarenal effects of gum arabic. The reader is encouraged to refer to a previous review addressing earlier experimental evidence on physiological GA effects [7]. The source product of gum Arabic (AlManna) used in these studies are from DarSavanna/Nature Gums Co Sudan) www.darsavanna.com.

Renal effects of Gum Arabic

Healthy mice

In healthy mice, addition of 10% GA to the drinking water has been shown to enhance creatinine clearance, renal ADH excretion as well as intestinal and renal excretion of Mg²⁺ and Ca²⁺ [9]. GA treatment decreased plasma concentration of 1,25(OH)₂D₃ as well as urinary excretion of phosphate and sodium [9]. GA treatment did not significantly modify food intake but increased fecal dry weight. GA treatment resulted in a significant reduction of the urine volume despite constant fluid intake [9]. The antiurexia was paralleled by an increase in urinary ADH excretion [9]. GA treatment increased fecal Na⁺ excretion, an effect presumably due to binding of Na⁺ to GA and thus impairment of intestinal Na⁺ absorption [9]. Along those lines GA treatment decreased urinary Na⁺ and Cl⁻ excretion. GA treatment increased plasma Na⁺ and Cl⁻ concentration but did not significantly modify plasma aldosterone concentration and systolic blood pressure [9], GA treatment enhanced urinary and fecal Ca²⁺ excretion, an effect at least partially due to increased intestinal Ca²⁺ intake due to the high Ca²⁺ content of GA [9] (Fig. 1). Possibly due to increased Ca²⁺ intake, GA decreased plasma concentrations of 1,25-dihydroxy vitamin D (1,25(OH)₂D₃) and tended to decrease plasma parathyroid hormone (iPTH) concentration [9], which would be expected to reduce renal tubular Ca²⁺ reabsorption and thus contribute to calcuiaria [10, 11]. Possibly in part due to decreasing 1,25(OH)₂D₃ and due to decreasing PTH levels [12], GA treatment significantly reduced urinary phosphate excretion [9] (Fig. 1). GA treatment increased the 24h-creatinine clearance as a measure of glomerular filtration rate [9]. The effect may at least in theory be due to formation of short-chain fatty acids such as butyrate [13], which are produced during GA degradation by intestinal bacteria [14] and which have been shown to increase glomerular filtration rate and renal blood flow [15].

Diabetic mice

As diabetic nephropathy is a major cause of end-stage renal disease [16-19], additional studies were performed on GA in diabetic animals [20], i.e. in heterozygous Akita (akita+/−) mice developing spontaneous diabetes due to gradual destruction of the pancreatic β-cells [21]. GA treatment of the akita+/− mice tended to slightly blunt the hyperglycemia, an effect, however, not reaching statistical significance. GA significantly decreased food and fluid intake but did not significantly modify body weight of akita+/− mice [20].
GA treatment significantly reduced urinary glucose excretion, Na⁺ excretion and urinary volume [20]. The reduced glucosuria presumably contributed to the blunted diuresis and urinary Na⁺, K⁺ and urea excretion. Glucosuria causes osmotic diuresis with subsequent renal loss of electrolytes [22]. The stimulating effect of GA treatment on release of ADH [9] would similarly be expected to decrease fluid, Na⁺ and urea excretion. GA tended to decrease urinary K⁺ excretion following GA treatment, an effect, however, not reaching statistical significance [20]. GA treatment did not affect plasma Na⁺ concentration or plasma K⁺ concentration of the akita+/- mice. GA treatment decreased plasma urea concentration and fractional urea excretion but did not significantly modify plasma aldosterone concentration [20]. In akita+/- mice GA treatment was followed by a marked and significant decrease of arterial blood pressure [20].

Similar to what has been seen in healthy mice (see above), GA treatment of akita+/- mice significantly increased the urinary excretion of Ca²⁺ [20]. GA treatment tended to increase plasma Ca²⁺ concentration, an effect, however, not reaching statistical significance [20] (Fig. 1). GA treatment of akita+/- mice was followed by a marked and significant decrease of plasma phosphate concentration [20] (Fig. 1), which may be due to the decrease of the plasma 1,25(OH)₂D₃ concentration [20]. The hypophosphatemia is in turn expected to result in antiphosphaturia, which has indeed been observed in healthy [9] and diabetic [20] animals. The decrease of plasma phosphate concentration is likely to increase the plasma concentration of ionized Ca²⁺ and thus to counteract hyperparathyroidism, a major pathophysiological parameter in advanced renal disease [23-25].

Diabetic akita+/- mice suffered from albuminuria, which was significantly decreased by GA treatment [20] (Fig. 2). The decrease of albuminuria could have been due to a decrease of blood pressure. In contrast to healthy animals [9], GA significantly decreased blood pressure in diabetic animals [20] (Fig. 2). The effect of GA on blood pressure may have resulted from enhanced absorption of Ca²⁺, which may lower blood pressure due to stimulation of the Ca²⁺-sensing receptor with subsequent vasodilation [26] and natriuresis due to inhibition of Na⁺,K⁺,2Cl⁻ co-transport in the thick ascending limb [27]. Whatever mechanism involved, the
decrease of proteinuria may delay the progression of renal disease [28], as proteinuria is an important parameter for the progression of renal disease [28-37].

Mice suffering from renal failure

GA treatment increased fecal nitrogen excretion [38], decreased oxygen radical formation [6], and modestly counteracted the renal injury following acute gentamicin-nephrotoxicity in rats [39]. A 4 weeks treatment with adenine increased the pro-inflammatory cytokine TNF-α, and, according to glutathione and superoxide dismutase, triggered oxidative stress [40]. Adenine treatment decreased the creatinine clearance and increased the plasma urea and creatinine concentrations, effects significantly blunted by additional GA treatment [41]. Adenine caused marked renal damage, effects ameliorated by GA treatment for four consecutive weeks. GA reversed the decrease in body weight and the glomerular, tubular and interstitial renal lesions following adenine treatment [40]. It has been argued that those effects of GA may favourably influence the clinical course of chronic renal disease [40].

Extrarenal effects of GA

Effect on intestinal transport

GA has been shown to enhance intestinal water and Na⁺ absorption in a rat model of chronic-osmotic diarrhea thus favouring rehydration [42]. Apparently, the effects of GA on intestinal Na⁺ and water absorption are dependent on the condition of the intestine. The water-holding capacity of dietary fibers [43] may have opposite consequences in intact intestine and during diarrhea.

GA treatment has been shown to decrease intestinal Na⁺ coupled glucose transport by downregulating the Na⁺ coupled glucose carrier SGLT1 [44], which determines the rate of intestinal glucose absorption [45] and thus influences glucose-induced insulin release and development of obesity (Fig. 3). Addition of GA to the drinking water of C57Bl/6 mice significantly decreased SGLT1 protein abundance in jejunal and ileal brush border membrane vesicles [44]. According to gene array data, GA does not decrease SGLT1 protein expression by inhibiting SGLT1 transcription but modifies SGLT1 abundance rather by modifiying posttranscriptional regulation [44]. Besides altered transcription [46] or mRNA stability [47], SGLT1 could be modified by trafficking into the plasma membrane [48] or by direct regulation of transporter activity [49]. SGLT1 activity is influenced by carbohydrate-rich diet [50], adrenergic innervation [51], insulin [52] glucagon-like peptide 2 [53], cholecystokinin [48], and insulin-like growth factors [54]. Signaling of SGLT1 regulation includes phosphatidylinositol (PI) 3 kinase [55], phosphoinositide-dependent kinase 1 (PDK1) [56] as well as the serum-and glucocorticoid-regulated kinase isoforms SGK1 [57, 58] and SGK3 [59]. SGLT1 activity is further subject to downregulation by the 67-kDa-protein RS1 [60, 61].
According to gene array analysis, decreased SGLT1 protein abundance following GA treatment could be secondary to enhanced expression of SGLT1 inhibitor RS1 (encoded by rsc1a1) [60] or downregulation of SGLT1 stimulator SGK3 [44].

According to Ussing chamber experiments electrogenic glucose transport is similarly decreased by GA treatment [44]. In those studies [44] GA treatment did, however, not significantly modify electrogenic transport of phenylalanine, methionine, glutamine or proline. GA treatment did not significantly alter food intake and only slightly decreased fluid intake [44]. Addition of 20% glucose to the drinking water significantly increases body weight and fasting plasma glucose concentrations, effects significantly blunted by simultaneous treatment with GA.

Earlier studies showed that in contrast to chronic GA treatment, direct application of GA to perfused jejunal segments did not influence intestinal glucose uptake [62]. Presumably due to downregulation of SGLT1 activity GA treatment blunts hyperglycemic effect of excessive glucose intake [44]. Dietary fibres were shown to decrease body weight [63], to prevent metabolic syndrome [64] and to improve glycemic control as well as hyperinsulinemia in type II diabetes [65]. The effect of dietary fibers has been attributed to interaction with food intake and body weight through satiety, glycemia and insulinemia, blood lipids and blood pressure [66].

In humans GA treatment indeed modifies body weight [67]. GA treatment decreases body mass index and body fat percentage among healthy adult females, and effect, which could be exploited in the treatment of obesity [67]. The effect of GA on obesity in humans may possibly be in part due to an influence on satiety [68]. GA treatment decreases the caloric intake and increases the subjective ratings of feeling satiated [68].

Anticarcinogenic effect

GA treatment modifies in colonic tissue the transcript levels of several genes known to be important for cell proliferation and/or tumor growth, such as CD38 antigen [69], interleukin 18 [70], vav 3 oncogene [71], Solute carrier family 7, member 9 [72], sulfatase 1 [73, 74], ubiquitin D [75] and chemokine (C-C motif) ligand 5 [76]. Moreover, GA treatment decreases the protein abundance of ß-catenin, a powerful oncogene in colonic tumors [77, 78]. The altered expression of these and additional genes could lead to inhibition of tumor growth during GA treatment.

GA-treatment further decreases angiogenin protein expression (Fig. 3) and ß-catenin expression [79]. Chemical cancerogenesis by intraperitoneal injection of 20 mg/kg 1,2-dimethylhydrazine followed by 3 cycles of 3% dextrane sodium sulphate in drinking water results in the development of multiple colonic tumors, an effect significantly blunted by GA treatment [79]. Those observations disclose a powerful anticarcinogenic effect of GA treatment, which could be exploited for prophylaxis or treatment of colon carcinoma [79].

Nutritional intake of several dietary fibers has previously been claimed to confer protection against colonic, prostate and rectal cancer [80]. However, the effect of fiber-containing nutrients on the incidence of colon cancer has been questioned [81]. Thus, a generalized claim that dietary fiber protects against the development of colon cancer is not supported by the presently available evidence.

The observation that GA influences the expression of angiogenins, provides an explanation for the protective effect of GA on tumor growth. However, the involvement of further mechanisms cannot be ruled out. GA is fermented under the influence of microorganisms in the colon to short chain fatty acids [4], which may counteract inflammation and tumor growth [82-85]. Moreover, short chain fatty acids have been shown to influence oncogene expression [86-88].

Effect on dendritic cells

Besides their role in tumor growth, angiogenins are known to participate in inflammatory responses in a wide variety of tissues [89-95] including inflammatory bowel disease [96].
effect of GA on angiogenin expression could thus exert antiinflammatory effects. Moreover, GA may influence inflammation by interacting with include intestinal dendritic cells (DCs), which are in direct contact with the intestinal lumen [97] (Fig. 3). DCs are antigen-presenting cells contributing to both innate and adaptive immunity and thus playing a decisive role in the regulation of the immune response [98-107]. GA treatment of DCs is followed by upregulation of several maturation markers, such as CD86 [108] CD54 [109] and CD40 [110, 111]. Low expression levels of CD86 and CD40 are characteristic of a tolerogenic DC phenotype [110]. GA exposure further leads to upregulation of MHC II, which is critically important for antigen presentation [112].

GA treatment further stimulates formation of the interleukins 6 (IL-6), 10 (IL-10) and 12 (IL-12p70) as well as TNFα with a particularly strong effect on IL-10 formation. The cytokines are important regulators of the immune response [113-115]. IL-10 suppresses DC function thus rendering them tolerant [116] Moreover, IL-10 is a negative feedback inhibitor of exuberant T cell responses [115]. Thus, GA may exert anti-inflammatory effects by modifying DC function.

GA activates ERK1 and ERK2 [117] and decreases the phagocytic activity of DCs. GA treatment increases the percentage of CD3+/CD8+ T cells and CD45+/CD19+B cells in the spleen [117]. The observations reveal a powerful effect of GA on maturation of and cytokine release from DCs [117].

Antimalarial effect

GA treatment has been shown to favourably influence the clinical course of malaria in mice [118]. GA treatment slightly decreases the parasitaemia and extends the life span of P. berghei infected mice. GA thus favourably influences the clinical course of murine malaria [118]. The mechanism accounting for this effect remained, however, elusive [118].

Conclusions

Gum arabic (GA) has been used in the treatment of chronic renal failure. Animal experiments indeed reveal several favourable renal effects of GA including decrease of plasma phosphate concentration, lowering of blood pressure and reduction of proteinuria. Moreover, GA exerts several extrarenal effects with therapeutic potential, such as slowing of intestinal glucose transport, which may be useful in the prophylaxis and treatment of obesity and diabetes as well as decrease of angiogenin and ß-catenin expression, which may counteract development of colon carcinoma and inflammatory disorders. At this stage clinical studies are warranted to test whether similar beneficial effects could be accomplished in human disease.
Acknowledgments

The author was supported by a DAAD fellowship and DarSavanna/Nature Gums Co., Sudan, www.darsavanna.com.

References

Nasir: Effects of Gum Arabic

54 Lane RH, Dvorak B, MacLennan NK, Dvorakova K, Halpern MD, Pham TD, Philippis AF: IGF alters jejunal glucose transporter expression and serum glucose levels in immature rats. Am J Physiol Regul Integr Comp Physiol 2002;283:R1450-R1460.

Nasir: Effects of Gum Arabic

Nasir: Effects of Gum Arabic

95 Suzumori N, Zhao XX, Suzumori K: Elevated angiogenin levels in the peritoneal fluid of women with endometriosis correlate with the extent of the disorder. Fertil Steril 2004;82:93-96.

114 Lehner T: Special regulatory T cell review: The resurgence of the concept of contrasuppression in immunoregulation. 2008;123:40-44.

