Does Neutrophil Gelatinase-Associated Lipocalin Have Prognostic Value in Patients with Stable Angina Undergoing Elective PCI? A 3-Year Follow-Up Study

Hanna Bachorzewska-Gajewska a,b Anna Tomaszuk-Kazberuk c, Iwona Jarocka b, Elzbieta Mlodawska a, Paulina Lopatowska a, Małgorzata Zalewska-Adamiec a, Slawomir Dobrzycki a, Włodzimierz J. Musial c, Jolanta Malyszko d

a Department of Invasive Cardiology, Medical University in Białystok, Poland; b Department of Clinical Medicine, Medical University in Białystok, Poland; c Department of Cardiology, Medical University in Białystok, Poland; d Department of Nephrology, Medical University in Białystok, Poland

Key Words
Neutrophil gelatinase-associated lipocalin • Stable angina • Percutaneous coronary intervention • Mortality

Abstract
Background: Neutrophil gelatinase-associated lipocalin (NGAL), a widely accepted diagnostic marker of acute renal injury (AKI) may be involved in the development of atherosclerosis. Purpose: To assess the prognostic significance of serum and urinary NGAL and serum cystatin C in patients with stable angina undergoing percutaneous coronary intervention (PCI) on a 3-year follow-up. Methods: We included patients with stable angina undergoing PCI. Serum NGAL and cystatin C were evaluated before and 4h, 8h after PCI. Urinary NGAL was evaluated before and 12h and 24h after the procedure. The primary end-point was all-cause mortality on a 3-year follow-up. Results: Among 132 patients there were 63% of males (mean age 64.5±9.8 years). Mean eGFR was 86.2±28.5 ml/min. During follow-up 8% of the patients died. All-cause mortality was significantly higher in patients with increased urinary NGAL concentration 12h after PCI (p=0.04). Urinary NGAL 12h after PCI correlated with eGFR (p<0.05), with serum NGAL evaluated before and 4h and 8h after PCI (p<0.05) and with increased serum cystatin C evaluated 4 hours after PCI (p<0.05). Conclusions: Increased urinary NGAL concentration is a strong predictor of mortality in patients with stable angina who undergo PCI and may be used for the risk stratification in this population.
Introduction

Neutrophil gelatinase-associated lipocalin (NGAL) is a glycoprotein stored in granules of neutrophils and is released by renal tubular cells in response to inflammation [1]. It has been shown to be an early and specific indicator of acute kidney injury (AKI) [2, 3] and may be a useful predictor of progression of chronic kidney disease (CKD) [4].

Furthermore, NGAL is also expressed in endothelial cells and may be involved in the development of atherosclerosis [5]. It could be increased in the presence of coronary artery disease (CAD) and may be a useful prognostic marker in patients with ischemic heart disease (IHD).

The aim of the present study was to assess the prognostic value of plasma and urinary NGAL in patients with stable angina who underwent elective percutaneous coronary intervention (PCI) on a 3-year follow-up.

Materials and Methods

Study population

We included in the study 132 consecutive patients with stable angina undergoing elective PCI admitted to the Invasive Cardiology Department. All the patients were given intravenous (IV) infusions of either NaHCO3 or 0.9% NaCl within 24 hours after the procedure. The study protocol conformed to the ethical guidelines of the 1975 Declaration of Helsinki, and was approved by the local ethics committee.

Laboratory methods

Serum and urinary NGAL and cystatin C were evaluated using commercially available research-based ELISA assay from ANTIBODYSHOP (Gentofte, Denmark) and Dade Behring (Marburg, Germany), respectively. Serum NGAL and cystatin C were evaluated before and 4h, 8h after PCI. Urinary NGAL was evaluated before and 12h and 24h after the procedure. Serum creatinine was assessed using standard laboratory methods before and 24h after PCI.

Echocardiographic analysis

Left ventricular ejection fraction (LVEF) was assessed by transthoracic echocardiography using the modified biplane Simpson’s method (Philips Ultrasound System Sonos 5500 (MA, USA), equipped for harmonic imaging with a 3.6 MHz transducer) and was derived in accordance with the recommendations of the European Society of Echocardiography [6].

Follow-up

The primary end-point was all-cause mortality on a 3-year follow-up. All data were obtained from the Polish population registry in Bialystok (Podlasie Voivodship Office) or telephone contact with the patients.

Statistical analysis

Distribution of every variable was tested with Kolmogorov-Smirnov test. Afterward the Student’s t test or the Mann-Whitney U test were used for statistical analysis where applicable. Additional analysis of correlations between non-categorical variables was performed using Pearson or Spearman tests, where applicable. Data are expressed as means and standard deviations (SD). A p value of less than 0.05 was considered as statistically significant. The statistic software StatSoft, STATISTICA (data analysis software system) version 10, was used.

Results

The baseline characteristics of the study population is presented in Table 1. Total mortality was evaluated during 1054 ± 159 days of follow-up. The elective PCI was successful in 97%. Mean contrast volume used during coronary angiography was 154.2 ± 84.2 ml.
Urinary NGAL 12h after PCI correlated with eGFR by MDRD formula and Cockroft-Gault formula (r = -0.25, r = -0.24, p<0.05, respectively), with serum NGAL evaluated before and 4h and 8h after PCI (r = 0.33, r = 0.23, r = 0.19, p<0.05, respectively) and with increased serum cystatin C evaluated 4 hours after PCI (r = -0.32, p<0.05).

Serum NGAL 4h after PCI correlated with age (r= -0.26, p<0.05), hemoglobin level (r= -0.23, p<0.05), serum creatinine (r= -0.24, p<0.05), eGFR by Cockroft-Gault formula (r = 0.25, p<0.05).

Cystatin C concentration 4h after PCI correlated with age (r= 0.23, p<0.05), ejection fraction (r=-0.29, p<0.05), hemoglobin level (r=-0.26, p<0.05), serum NGAL 4 hours after PCI (r= -0.26, p<0.05), serum creatinine (r= 0.39, p<0.05), eGFR by MDRD formula and Cockroft-Gault formula (r = -0.46, r = -0.24, p<0.05, respectively), mean contrast volume (r= 0.18, p<0.05) and serum NGAL 4h after PCI (r = 0.34, p<0.05).

During follow-up 8% (n=10) of the patients died. All-cause mortality was significantly higher in patients with increased urinary NGAL concentration 12h after PCI (12 % vs 2%,

DOI: 10.1159/000350155
Published online: August 31, 2013
© 2013 S. Karger AG, Basel
www.karger.com/kbr

Bachorzewska-Gajewska/Tomaszuk-Kazberuk/Jarocka/Mlodawska/Lopatowska/Zalewska-Adamiec/Dobrzycki/Musial/Malyszko: NGAL in Patients with Stable Angina

p=0.04) compared to those without increased concentration which is displayed on Kaplan-Meier curve (Fig. 1). Both groups did not differ significantly in clinical characteristics. The increased mortality was also observed in patients with increased serum NGAL concentration 4h after PCI in relation to no increased serum NGAL (9% vs 2%), but that difference was not statistically significant (p=0.13). There was also no significant increase in mortality in patients with rise in serum NGAL concentration 8h (p=1.0) after PCI or in urinary NGAL concentration 24h after procedure (p=0.85).

Cystatin C concentration 4h (p=0.27) and 8h (p=0.84) after PCI did not correlate with mortality.

Discussion

In this study we found that increased urinary NGAL concentration 12 hours after PCI predicts all-cause mortality in patients with stable angina on a 3-year follow-up. To our knowledge the present study demonstrates for the first time the use of NGAL in estimating the long-term mortality in this population.

NGAL, a widely accepted renal marker, is expressed in endothelial cells and may be involved in the development of atherosclerosis. There are several studies which show that serum NGAL concentration is significantly elevated in patients with angiographically-confirmed coronary artery disease compared to those with normal arteries [7, 8]. Furthermore, Zografos et al. observed statistically significant correlations between NGAL concentration and the number of diseased vessels and the severity of CAD defined by modified Gensini index [8].

The important aspect of NGAL is its prognostic value in ischemic heart disease. There are several studies which use NGAL for risk stratification in patients with unstable angina (UA) [9] and acute myocardial infarction (AMI) [10, 11], but its role in patients with stable angina was not established. Furthermore, most of the studies concentrate on short-term outcomes. Lindberg et al. [10] prospectively enrolled 584 patients admitted due to a ST-segment elevation myocardial infarction (STEMI). They found that high plasma NGAL concentration measured 30 minutes before PCI independently predicts all-cause mortality and major adverse cardiovascular events (MACE) after STEMI on a 2-year follow-up. In another recent
study investigators demonstrated that high NGAL concentration is a predictor of in-hospital and 1-year mortality and MACE in patients with STEMI [11].

The prognostic value of NGAL was also defined in patients with chronic heart failure (CHF). Bolignano et al. [12] observed that serum NGAL >783ng/ml was associated with significantly higher 2-year mortality. Another study showed that high plasma NGAL is a predictor of a cardiac death or transplantation in CHF patients in a 3-year follow-up [13]. Similarly, NGAL could be used as a prognostic marker in patients presenting with acutely decompensated heart failure (HF). In the GALANT multicentre prospective trial discharge plasma NGAL was a strong predictor of a 30-days outcome, such as death and hospital readmission [14]. In other study high serum NGAL concentration (>167.5 ng/mL) was associated with 2.7-fold increase in the risk of death and 2.9-fold increase in the risk of a combined end-point (death or hospital admission) on 3-month follow-up in acute heart failure (AHF) patients [15].

In patients with chronic kidney disease NGAL remains a strong predictor of worse prognosis. Recent prospective study of patients with stage 3 or 4 CKD showed that urinary NGAL-to-creatinine ratio is associated with the combined end-point (death or hospital admission) in a 3-month follow-up in acute heart failure or progression to end-stage renal disease (ESRD) in a 2-year follow-up [4].

Apart from NGAL cystatin C is a protein mainly used as a biomarker of kidney function or as a predictor of cardiovascular complications. There are several studies which demonstrated that cystatin C predicts all-cause mortality or cardiovascular events among patients with chronic heart disease [17-19]. However, in our group of patients we did not find any significant relationship between cystatin C concentration and long-term mortality.

Conclusion

Increased urinary NGAL concentration is a strong predictor of mortality in patients with stable angina who undergo PCI and may be used for the risk stratification in this population.

Conflict of Interest

The authors report no conflicts of interest.

References

