Comparison of the European and Japanese Guidelines for the Acute Management of Intracerebral Hemorrhage

Kazunori Toyodaa Thorsten Steinerb, c Corina Epplc Rolf Kernd Masao Nagayamae Yukito Shinoharaf Michael G. Hennericid

aDepartment of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan; bDepartment of Neurology, Klinikum Frankfurt Höchst, Frankfurt, cDepartment of Neurology, University of Heidelberg Hospital, Heidelberg, and dDepartment of Neurology, UMM, University of Heidelberg, Mannheim, Germany; eDepartments of Neurology and Rehabilitation, and the Center for Stroke and Neurocritical Care, International University of Health and Welfare Atami Hospital, Atami, and fDepartment of Neurology, Federation of National Public Service Personnel Mutual Aid Associations Tachikawa Hospital, Tokyo, Japan

Key Words
Acute stroke treatment · European stroke guidelines · Evidence-based medicine · Hemorrhage · Japanese stroke guidelines · Randomized clinical trials · Review · Stroke prevention

Abstract

\textbf{Background:} Different aspects of acute stroke management and strategies for stroke prevention derive from two viewpoints: specific traditional and historical backgrounds and evidence-based medicine from modern randomized controlled trials (RCTs), meta-analysis and authorized clinical practice guidelines (GLs). Regarding intracerebral hemorrhage (ICH), \textit{Cerebrovascular Diseases} published the 2006 European stroke initiative recommendations for the management of ICH. In 2009, the revised Japanese GLs for the management of stroke, including that of ICH, appeared in Japanese. Whereas GLs for the prevention and treatment of ischemic stroke were presented in detail, recommendations with regard to ICH are relatively rare both in Japan and Europe. \textbf{Methods:} Since 2011, the authors have met repeatedly and have compared the latest versions of published European and Japanese GLs for ischemic and hemorrhagic strokes. Many aspects have only been addressed in one but left out in the other GLs, which consequently founded the basis for the comparison. Classification of evidence levels and recommendation grades defined by the individual committees differed between both original GLs. \textbf{Results:} Aspects of major importance were similar and hence did not need extensive interpretation, mostly due to a lack of evidence from appropriate RCTs worldwide. The target level to which systolic blood pressure should be lowered is quite high; <170 mm Hg for patients with known hypertension in Europe and <180 mm Hg in Japan. The results of ongoing clinical trials are awaited for the optimal target level and optimal medications. Concerning ICH associated with oral an-

K.T., T.S. and C.E. contributed equally to this work.

\textcopyright{} 2013 S. Karger AG, Basel

1015-9770/13/0355-0419$38.00/0

www.karger.com/ced
ticoagulant therapy, both guidelines give similar recommendations, namely that anticoagulation should be discontinued and the international normalized ratio of prothrombin time should be normalized with prothrombin complex concentrate or fresh-frozen plasma and additional vitamin K. Patients with ICH were treated surgically, often based on individual decisions – more frequently in Japan, depending on the association with hypertension. Patients with large or intraventricular bleedings were only treated if a life-saving performance was considered, irrespective of the neurological outcome. Infra- and supratentorial differences were similarly addressed in both GLs. Conclusion: This brief survey – when compared with the lengthy original recommendations – provides a stimulating basis for an extended interest among Japanese and European stroke clinicians to learn from their individual experiences and to strengthen efforts for joint cooperation in treating and preventing stroke all around the globe.

Intracerebral hemorrhage (ICH) accounts for 10–17% of all strokes. The incidence of ICH is influenced by racial factors and was found to be higher in Blacks, Hispanics and Asians compared to the white population. In particular, Asian ethnic origin is a possible risk factor for intracranial hemorrhage. In 1965, Japan had the highest mortality of stroke worldwide with the mortality rate of ICH being quite high among all stroke types. A recent meta-analysis indicates that the incidence of ICH in the general Asian population was 2-fold higher than that in the white population [1].

We compared the European Stroke Initiative (EUSI) Recommendations for the management of ICH (2006) [2] and the chapters of ICH in the Japanese guidelines for the management of stroke (2009) [3]. Japanese guidelines are more up to date and thus included trials that were not available when EUSI guidelines were written. In the following, we try to present differences and similarities of both guidelines and worked out which recommendations lacked in both guidelines.

Primary Prevention and Treatment of Risk Factors

The EUSI guidelines give no recommendations for primary prevention, but give some evidence concerning different risk factors (table 1). Arterial hypertension is mentioned as the most common risk factor for spontaneous ICH. The EUSI Writing Committee describes that the role of hypertension and the beneficial effect of antihypertensive treatment with regard to the risk of ICH were verified in PROGRESS (Perindopril Protection against Recurrent Stroke Study) [4], which showed that the relative risk of ICH was reduced by 50% in comparison with the placebo-treated group after a 4-year follow-up, but give no recommendation for treatment as primary prevention. In the Japanese guidelines, hypertension is regarded as the greatest risk factor for ICH and ischemic stroke. There is a positive linear correlation between blood pressure levels and the risk of stroke: the higher the blood pressure, the higher the risk of stroke [5]. Thus, medical antihypertensive treatment was strongly recommended as primary prevention [6].

Concerning hypercholesterolemia, the EUSI recommendations mention that hypercholesterolemia is associated with a lower risk of ICH, but treatment with statins did not increase the risk of ICH. The risk of hemorrhagic stroke, including ICH, is higher in smokers, but no recommendation of nonsmoking as a primary prevention is verbalized. An increased body mass index, which was found to be correlated with an increase in intraventricular hemorrhage (IVH) volume, or alcohol consumption are also considered risk factors for ICH. The Japanese guidelines recommend consumption of a moderate amount of vegetables and fruits every day, whereas no dietary advice was found in the EUSI guidelines.

For secondary prevention after ICH, EUSI guidelines give recommendations for lowering blood pressure with a diuretic and angiotensin-converting enzyme inhibitor (level A), excessive alcohol should be discouraged (class IV), persons with elevated body mass index should take a weight-reducing diet (despite lack of evidence) and smokers should quit smoking (class IV evidence).

Acute Blood Pressure Management

There is no randomized controlled trial comparing the severity and prognosis of patients with acute hypertension and ICH with/without blood pressure-lowering treatment (table 2). Further clinical studies need to be conducted in the future to determine the optimal target level to which blood pressure should be lowered from the perspective of clinical prognosis. The target level in the Japanese guidelines is quite high (systolic blood pressure <180 mm Hg) and differs much from the major expert opinions in the nationwide survey [7], where most experts re-
Comparison of Stroke Guidelines: Acute Management of Intracerebral Hemorrhage

Table 1. Primary prevention and treatment of risk factors

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertension
An important role with regard to the risk of ICH.
Treatment of hypertension has a beneficial effect (level A).</td>
<td>Treating hypertension is the most vital step to reduce the risk of ICH (grade A).</td>
</tr>
<tr>
<td>Hypercholesterolemia
Associated with a lower risk of ICH; however, treatment with statins does not increase the risk of ICH (level B).</td>
<td>It has generally been agreed that its underlying hepatic disease and coexisting hypertension should be treated. Lowering serum cholesterol levels with statins does not increase the incidence of ICH, but some data have implied that intervention for stroke patients may increase the recurrence of ICH (grade B).</td>
</tr>
<tr>
<td>Smoking is a risk factor for ICH (level B).</td>
<td>People should be encouraged to take a moderate amount of vegetables and fruits every day (grade B).</td>
</tr>
<tr>
<td>Alcohol consumption
Several studies document an increased risk of ICH in relation to alcohol consumption. Spontaneous ICH can probably also be triggered by binge drinking (level C).</td>
<td>Heavy alcohol consumption leading to abnormal blood γ-GTP levels should be discouraged (grade B). We recommend the very careful consideration of an appropriate dose of each antithrombotic drug and its dual medications that are required to control concurrent hypertension (grade B).</td>
</tr>
</tbody>
</table>

A variety of *illicit drugs* are known to cause ICH (amphetamine, cocaine and phenylpropanolamine).

<table>
<thead>
<tr>
<th>Table 2. Acute blood pressure (BP) management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Known hypertension (HPT)
If SBP >180 mm Hg or DBP >105 mm Hg → BP <170/100 mm Hg or MAP <125 mm Hg (class IV, level C)</td>
</tr>
<tr>
<td>Unknown history of HPT
If SBP >160 mm Hg or DBP >95 mm Hg → BP <150/90 mm Hg or MAP <100 mm Hg (class IV, level C)</td>
</tr>
<tr>
<td>Decrease pressure not more than 20% of MAP on admission (class IV, level C)</td>
</tr>
<tr>
<td>When ICP elevated (nitroprusside contraindicated) → adapt thresholds to cerebral perfusion pressure >70 (class IV, level C)</td>
</tr>
<tr>
<td>Intravenous drugs recommended for better controllability (GCP)</td>
</tr>
</tbody>
</table>

SBP = Systolic blood pressure; DBP = diastolic BP; MAP = mean arterial pressure; HPT = hypertension.

aped <140, <150 or <160 mm Hg as a target systolic blood pressure partly based on results of small domestic studies [8, 9]. The EUSI guidelines recommend target levels and maximum levels of blood pressure for known and unknown hypertension, and recommend an adaptation in case of elevated intracranial pressure (ICP). Routine blood pressure lowering is not recommended.

Furthermore, different medications are mentioned in the EUSI guidelines, especially intravenous drugs due to their better controllability. EUSI guidelines recommend...
a careful use of calcium antagonists because of their rapid and excessive hypotensive effect. In the Japanese guidelines, the use of calcium antagonists (e.g. nicardipine) is contraindicated in patients with hyperacute ICH, because of vasodilating effects and possible antiplatelet actions of calcium antagonists; however, direct evidence for this is lacking. In the above-mentioned nationwide survey, nicardipine was the most popular agent for acute ICH management [7]. In 2011, the Japanese government finally ordered the pharmaceutical makers of nicardipine to revise the label. In the new label, description of contraindication for ICH was abolished. In 2012, several Asian nations similarly revised the label of nicardipine.

The EUSI or Japanese guidelines did not consider the results of ATACH (Antihypertensive Treatment of Acute Cerebral Hemorrhage) [10] and INTERACT (Intensive Blood Pressure Reduction in Acute Cerebral Hemorrhage Trial) [11], although the newer American Heart Association/American Stroke Association guidelines [12] advocate that lowering systolic blood pressure to 140 mm Hg is probably safe based on the results of INTERACT [11]. The results of both INTERACT 2 [13] and ATACH II [14] are awaited, and might further answer the question of whether there are other benefits of early systolic blood pressure reduction in patients with ICH, and provide clearer evidence for the target blood pressure and the choice of drugs. However, it seems reasonable to lower blood pressure cautiously appreciating a slight effect of antihypertensives on hematoma expansion reduction in an overall weak or equivocal context of evidence and considering that autoregulation is often preserved in the acute phase (as opposed to the postacute phase) of ICH and furthermore aggressive lowering of blood pressure theoretically carries the risk of cerebral ischemia in hypertensive patients.

Acute Hemostatic Management

EUSI guidelines do not recommend the use of hemostatic agents (as tranexamic acid, e-aminocaproic acid and aprotinin) to control bleeding, because no clinical efficacy has been demonstrated thus far (table 3). Japanese guidelines recommend blood products such as platelets, prothrombin complex concentrate (PCC) or fresh-frozen plasma (FFP) in hypertensive ICH only in case of concurrent abnormal blood coagulation or platelet counts, though such products have been rarely in clinical use as hemostatic agents unless patients were anticoagulant users in Japan.

Concerning *ICH associated with oral anticoagulant therapy*, both guidelines give similar recommendations, whereas Japanese guidelines prefer PCC rather than FFP (although PCC is not covered by the Japanese health insurance). Current questions arise on feasibility, safety and efficacy of prothrombin-dependent coagulation factors in concentrated PCC versus unconcentrated FFP versus single factors like recombinant coagulation factor VIIa. The current information on these questions is inconsistent, and any conclusion drawn towards the preference of one of these coagulants is premature. Time to reversal of the international normalized ratio (INR) seems to be the most important determinant, and minimizing delays in drug administration should have highest priority, as recommended in both guidelines. Initial dosages of PCC for the reversal are different between both guidelines: 10–30 (or 10–50) U/kg in the EUSI recommendation and 500 U regardless of body weight in the Japanese one.

There is a considerable dilemma concerning when to restart anticoagulant therapy following ICH. The *optimum timing of the resumption of anticoagulation* is a crucial issue with conflicting evidence. EUSI recommended to restart not earlier than 10–14 days after the index bleeding but to check indication first. The Japanese guidelines recommend use of heparin after normalization of INR in patients with an elevated risk for embolism, but do not mention the timing of heparinization. Among the respondents in the nationwide survey, the timing to restart anticoagulation varied greatly: within 4 days in 7%, 5–7 days in 21%, 8–14 days in 25%, 15–28 days in 28% and 29 days or later in 18% [15].

The *new direct oral anticoagulants* (DOAC) as dabigatran, rivaroxaban and apixaban seem to be a safer and more convenient replacement for warfarin. Due to fewer drug and food interaction, easier handling and a more favorable risk-benefit profile compared with warfarin, it is conceivable that the number of patients treated with DOAC will increase. The optimal management of DOAC-associated ICH is unknown and no specific antidote is available. For this reason, physicians are faced with new challenges, especially in emergency situations, and questions arise on how to manage emergency situations like the indication for thrombolysis in acute stroke, and the management of intracranial or gastrointestinal bleedings. In the future, guidelines have to give recommendations how to manage DOAC-associated hemorrhages, but data are still limited.
Table 3. Acute hemostatic management

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>For non-antithrombotic users</td>
<td></td>
</tr>
<tr>
<td>Pending further data on efficacy and safety, recombinant factor VIIa should not be used outside</td>
<td>Hypertensive ICH + normal coagulation</td>
</tr>
<tr>
<td>of a phase III trial. A phase III trial is needed to confirm the beneficial effect of</td>
<td>→ Blood products are not recommendable (grade C2).</td>
</tr>
<tr>
<td>recombinant factor VIIa in ICH (class IV, level B, obsolete).</td>
<td>Hypertensive ICH + abnormal platelets or blood coagulation</td>
</tr>
<tr>
<td></td>
<td>system + bleeding tendency</td>
</tr>
<tr>
<td></td>
<td>→ consider blood products such as platelets, PCC and FFP (grade C1).</td>
</tr>
<tr>
<td></td>
<td>There is no adequate scientific evidence to support the use of</td>
</tr>
<tr>
<td></td>
<td>capillary stabilizers or antiplasmin agents for the treatment of</td>
</tr>
<tr>
<td></td>
<td>acute ICH (grade C1).</td>
</tr>
<tr>
<td>ICH during oral anticoagulant treatment (OAT) such as warfarin</td>
<td></td>
</tr>
<tr>
<td>INR >1.4</td>
<td>Stop warfarin and normalize the prothrombin time (PT) INR to</td>
</tr>
<tr>
<td>→ OAT should be discontinued and the INR should be</td>
<td>≤1.35 using vitamin K and blood products as soon as possible</td>
</tr>
<tr>
<td>normalized with PCC or FFP.</td>
<td>(grade B).</td>
</tr>
<tr>
<td>Intravenous vitamin K should be added (class IV).</td>
<td>Use of PCC (not covered by Japanese health insurance) is recommended rather than FFP</td>
</tr>
<tr>
<td></td>
<td>(grade B).</td>
</tr>
<tr>
<td></td>
<td>With high risk or recurrent cerebral embolism</td>
</tr>
<tr>
<td></td>
<td>→ activated partial thromboplastin time should be 1.5- to 2-fold higher using heparin</td>
</tr>
<tr>
<td></td>
<td>after normalizing PT-INR (grade C1).</td>
</tr>
</tbody>
</table>

After ICH, **antiplatelet treatment** has to be individualized, depending on the presence of ischemic vascular diseases or their perceived risk on the one hand and the anticipated risk of ICH recurrence on the other (class IV).

In patients who develop **ICH during thrombolytic therapy**, thrombolytic drugs and antithrombotic drugs should be immediately stopped, and it is recommended to correct the low levels of coagulation factors such as fibrinogen and prolonged PT and activated partial thromboplastin time using blood products and protamine (grade C1). Indication for surgical evacuation of the hematoma should be carefully examined while taking account of the functional prognosis after correcting the bleeding tendency (grade C1).

After having rechecked the indication for anticoagulation (following the EUSI recommendations on ischemic stroke), OAT may be continued after 10–14 days, depending on the perceived risk of thromboembolic occlusion and ICH recurrence (class IV).

Table 4. Respiratory management

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Included in the general management and as part of ICP management (see text).</td>
<td>Airway management and/or artificial respiratory management should be considered when disturbance of consciousness has progressed and a respiratory disorder is present during the acute phase (grade C1). Routine oxygen administration to patients with mild-to-moderate stroke is not recommended (grade C2).</td>
</tr>
<tr>
<td>Hyperbaric oxygen therapy for treatment or determination of surgical indication is not recommended (grade C2).</td>
<td></td>
</tr>
</tbody>
</table>

Comparison of Stroke Guidelines: Acute Management of Intracerebral Hemorrhage

Cerebrovasc Dis 2013;35:419–429
DOI: 10.1159/000351754

423
Table 5. Management of brain edema and intracranial hypertension

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>The following measurements might be considered in patients with ICH if ICP increases beyond 20 mm Hg:</td>
<td>(ICP level is not defined)</td>
</tr>
</tbody>
</table>

Body position

Elevation of body position with respect to CPP

(ICP >60 mm Hg; class IV, level C).

- Raising the upper part of the bed to put the body at a 30° angle has been reported to be beneficial for patients with intracranial hypertension (grade C1); however, attention should be given to lowering blood pressure.

Osmotic therapy

- **Glycerol** (500 ml 10% per day).
- **Mannitol** (100 ml 20%; every 3–6 h; serum osmolality <320 mmol/l).
- **Hyper-HAES** (NaCl 7.5%, HES 6%, serum sodium <150 mmol/l).
- **THAM buffer** (central line because of tissue necrosis) 1 mmol/kg bolus, 0.25 mmol/kg as permanent infusion (pH <7.5–7.55; class IV, level C).

Intravenous administration of hypertonic glycerol is recommended for major acute ICH accompanying intracranial hypertension (grade B).

There is no specific rationale supporting the idea that mannitol treatment is effective for acute ICH (grade C2), but this treatment can be considered when intracranial pressure progressively increases or clinical findings deteriorate in relation to mass effect (grade C1).

Hyperventilation

Intermittent hyperventilation (pCO₂ level of 30–35 mm Hg), most useful in the first hours (class IV, GCP).

In patients using a respirator, a mild hyperventilation (pCO₂ adjusted to 30–35 mm Hg) is recommended (level IIb).

Analgesedation with barbiturates (pentobarbital or thiopental).

Corticosteroids

- At the current stage, corticosteroids are not recommended (class IV, level C).

There is no concrete scientific evidence demonstrating that corticosteroids are effective in reducing acute ICH (grade C2).

Hematoma evacuation with/without craniectomy.

- **External ventricular drainage** in case of hydrocephalus or clinical deterioration and neuroradiological evidence of brainstem compression (GCP).

Table 6. Management of seizures

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Early prophylactic treatment of seizures is not recommended for all patients, but may be considered for selected patients with lobar ICH. In all other cases, seizures should only be treated if they occur (level C).</td>
<td>Antiepileptics should be used for seizure attacks in patients with acute stroke. Thereafter, the dosage should be carefully reduced while taking into account the possibility of developing late-onset epilepsy (grade C1).</td>
</tr>
</tbody>
</table>

If seizures occur, a stepwise administration of antiepileptic drugs is generally recommended. Antiepileptic treatment should be continued for 30 days. After this time, treatment should be reduced and eventually discontinued. If seizures reoccur, patients should receive chronic treatment with anticonvulsants (level C).

Seizure occurs frequently in patients with ICH involving the cerebral cortex. In ICH limited to the putamen, thalamus or infratentorium, concurrent seizure is rare. The prophylactic use of antiepileptics is not recommended except for patients who have undergone brain surgery (grade C2).

In ICH patients who developed late-onset seizures (>2 weeks after onset), recurrent seizures often occur; thus, administration of anti-epileptics is advisable (grade C1).
Management of Seizures

In Japanese guidelines, the management of early and late-onset seizures is separately recommended. EUSI guidelines are more detailed and recommend a stepwise treatment with recommendations including drug dosages for seizure or status epilepticus treatment (table 6).

Respiratory Management

There is no special recommendation concerning respiratory management for patients with ICH in the EUSI guidelines (table 4). Oxygenation should be monitored continuously; in addition, respiratory care and prophylactic measures concerning aspiration pneumonia should be part of the general treatment of all stroke patients, including those with ICH. Japanese guidelines give special recommendations for respiratory management.

Management of Brain Edema and Intracranial Hypertension

EUSI guidelines concerning ICP management give more detailed recommendations, especially for drug dosage and an escalation scheme for treatment (table 5). Both guidelines recommend a mild therapeutic hyperventilation to achieve arterial pCO₂ levels of 30–35 mm Hg, and both recommend elevation of body position at a 30° angle to decrease ICP. Intravenous administration of hypertonic glycerol is a frequent choice for major acute ICH in Japan. Concerning the application of mannitol, Japanese guidelines recommend the use only in cases of severe mass effect. Barbiturates are not recommended in Japanese guidelines as ultimate treatment option. Both guidelines do not mention hypothermia as therapeutic option to reduce ICP. Japanese guidelines do not recommend hypothermia because of lacking evidence (grade C2). Both guidelines recommend lowering of body temperature in case of fever, using even methods such as cooling.

Table 7. Prevention of deep venous thrombosis and pulmonary embolism

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression stockings and intermittent pneumatic compression are recommended for the prevention of thromboembolism in patients with disabling limb weakness from the beginning of treatment (class IV).</td>
<td>When paralysis is noted in patients with acute ICH, deep venous thrombosis and pulmonary embolisms should be prevented using compression stockings or intermittent pneumatic compression, or the combination of these (grade B).</td>
</tr>
<tr>
<td>Low-dose subcutaneous heparin or low-molecular-weight heparin should be considered after 24 h, especially in patients who are at high risk of thromboembolism (class IV).</td>
<td>Administration of low-dose heparin can be considered for ICH patients with concurrent hemiplegia without rebleeding 3–4 days after onset (level IIa).</td>
</tr>
</tbody>
</table>

Concerning prevention of deep venous thrombosis and pulmonary embolism, both guidelines have similar recommendations (table 7).

Surgical Indication for Acute ICH

Concerning surgical indication for acute ICH, Japanese guidelines distinguish between treatment in patients with hypertensive ICH and ICH not associated with hypertension. For hypertensive ICH, detailed recommendations according to different locations are provided. EUSI guidelines discern only between supratentorial or infratentorial ICH (tables 8, 9). Supratentorial ICH is divided into superficial (mostly) lobar and deep (mostly basal ganglion) locations, which mainly goes back to the results of STICH (International Surgical Trial in Intracerebral Hemorrhage) [16]. They give no general recommendations for surgical treatment. For infratentorial hemorrhages, good results are mentioned for surgical evacuation of cerebellar hematomas, but optimal timing for surgery is not provided. EUSI guidelines do not give recommendations for brain stem hemorrhage, but they...
Table 8. Surgical indication for supratentorial ICH

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No evidence for a general recommendation (class IV, level C).</td>
<td>General recommendation: If ICH < 10 ml or mild neurological deficit regardless of the site if ICH → no surgery (grade D). No rationale for recommending evacuation for patients with deep coma (Japan Coma Scale III-300) (grade C2).</td>
</tr>
</tbody>
</table>
| If ICH is superficial (the clot is subcortical ≤1 cm from the surface and does not reach the deep basal ganglia) or if there is deterioration in consciousness (from GCS level of between 12 and 9 to ≤8) → Consider craniotomy (level C). | Putaminal hemorrhage:
– Consider evacuation if hematoma volume > 31 ml in patients with moderate neurological findings and evidence of severe mass effect (grade C1).
– Particularly stereotactic evacuation is recommended for patients with disturbed consciousness (Japan Coma Scale II-20 to 30) (grade B). |
| Deep-seated hematomas do not benefit from craniotomy. Stereotactic aspiration may be considered (class IV), especially if mass effect is present. | Thalamic hemorrhage:
No rationale for hematoma evacuation in the acute stage (grade C2).
Ventricular drainage can be considered when accompanied with intraventricular hematoma or marked ventricular dilatation (grade C1). |

Table 9. Surgical indication for infratentorial ICH

|---------------------------------|--------------------------|
| Cerebellar hemorrhage
If cerebellar ICH > 2–3 cm in diameter, deterioration or brain stem compression and/or hydrocephalus occurs consider surgical evacuation and ventricular drainage as soon as possible (class IV, level C). | Surgery can be considered if cerebellar hemorrhage is > 3 cm, if patients deteriorate neurologically, or patients have brain stem compression and hydrocephalus from ventricular obstruction (grade C1). |
| Intraventricular hemorrhage
Intraventricular thrombolysis trials may be considered if an external ventricular drainage becomes necessary (class IV, level C), but not in infants. An intraventricular thrombolysis with urokinase or recombinant tissue plasminogen activator seems to be effective. | Because it is quite likely to be associated with vascular disease it is desirable to perform angiography to detect the bleeding source (grade C1).
Ventricular drainage should be considered for acute hydrocephalus (grade C1). |
| Brainstem hemorrhage
No recommendation. | There is no rationale for hematoma evacuation (grade C2).
Ventricular drainage can be considered when most of the hematoma is in the ventricle and the ventricle is highly dilated (grade C1). |
| In case of hydrocephalus
External drainage can be ventricular or via the lumbar route if it is a communicating type of hydrocephalus (class IV). Lumbar drainage is definitely contraindicated with all types of obstructive hydrocephalus or if the etiology is in doubt. | Consider external ventricular drainage (grade C1). |
are more detailed concerning treatment of hydrocephalus compared with the Japanese guidelines. Both guidelines recommend the use of external ventricular drainage in case of hydrocephalus.

Organized studies on the selection of treatment procedures are rare. Some trials showed a trend in favor of early surgery in supratentorial nonaneurysmal ICH. The international STICH trial was conducted to demonstrate clinical efficacy of surgery in ICH but was not designed to look at the ideal surgical technique. It suggested a small nonsignificant advantage for surgery. A subgroup analysis showed that patients with superficial hematomas and without IVH presented a more encouraging picture of surgery [16]. Thus we are still unable to specify potential candidates for the optimum surgical technique in current guidelines. The ongoing STICH II trial [17] investigates the hypothesis that patients with superficial lobar hematomas and no IVH might benefit from early hematoma evacuation (<12 h after randomization) [17]. A previously published meta-analysis of 2,186 cases concluded that in particular early surgery (<8 h of ictus) is beneficial [18].

In Japan, a nationwide survey on 7,010 patients with putaminal hemorrhage was conducted, and mortality and functional prognosis 3 months after its onset were compared in 1990 [19]. The survey indicated that surgical therapy for putaminal hemorrhage was beneficial only when it was performed to save the lives of patients in very poor condition. A randomized comparative trial on stereotactic evacuation of putaminal hemorrhage in patients with moderately disturbed consciousness on admission showed a better functional outcome than in those with medical treatment [20].

It has been shown that patients with smaller hemorrhage have a better clinical outcome and a lower mortality, which led to the hypothesis that methods of removing ICH in stable patients could result in a lowered risk of mortality and improved outcome [21, 22]. The ongoing MISTIE (Minimally Invasive Surgery plus rt-PA for ICH Evacuation) trial [22] (NCT00224770) has the purpose to determine the efficacy of using a combination of minimally invasive surgery and clot lysis with recombinant tissue plasminogen activator to remove ICH using image-based surgery (MRI or CT) to provide catheter access to ICH for the intervention for clot aspiration followed by instillation of up to 9 doses of recombinant tissue plasminogen activator compared to conventional medical management. The specific objective of MISTIE is to test the efficacy and safety of this intervention and assess its ability to remove blood clots from brain tissue. The treatment of spontaneous supratentorial ICH will remain controversial until a definitive prospective randomized controlled trial shows evidence in favor of a particular treatment. At present, the recommendations for or against surgery are based on conflicting evidence.

Also, for IVH, recommendations are difficult due to the lack of evidence. The EUSI recommend intraventricular thrombolysis only within clinical trials, and Japanese recommendations discuss different randomized comparative trials on urokinase treatment, concluding that intraventricular urokinase is effective at least for life-saving treatment for patients with severe IVH [23], but give no recommendation for this therapy. It needs to be mentioned that urokinase might not be available in many countries.

Concerning ICH caused by cerebral arteriovenous malformation, dural arteriovenous fistulas, cavernous angiomas or venous angiomas, Japanese guidelines give very detailed information and recommendations concerning risk factors for bleeding, surgery, embolization, stereotactic radiotherapy, epilepsy and pediatric patients. EUSI guidelines give only a short recommendation for ICH caused by arteriovenous malformations. Japanese recommendations also cover ICH due to brain tumor ['Surgical treatment is recommended for patients with massive hemorrhage from a brain tumor accompanied by the mass effect (grade C1). Acute deterioration of visual acuity and the visual field due to pituitary apoplexy are indications for emergency surgery (grade C1)'].

Recommendations Mentioned Only in One of the Guidelines

In the EUSI guidelines, recommendation for brain imaging for ICH diagnosis was described. CT and MRI are equally sensitive, however CT may be faster. ICH in a typical location but at young age or without a history of hypertension needs further diagnostic workup, including MR angiography, CT angiography or digital subtraction angiography to investigate the underlying vascular pathology. However, Japanese guidelines do not refer to imaging strategies.

Japanese guidelines give special recommendations concerning upper gastrointestinal bleeding in patients with hypertensive ICH. Special caution should be exercised to concurrent gastrointestinal bleeding, and prophylactic administration of an antiulcer agent is recommended (C1). EUSI guidelines do not mention upper...
gastrointestinal bleedings. Furthermore, special recommendations for ICH in patients with renal failure are covered only in the Japanese guidelines.

Concerning secondary prevention of depression, European guidelines did not mention this complication, whereas Japanese guidelines recommend the following: Depression frequently occurs after stroke including ICH. It should be assiduously examined for because depression is a factor interfering with cognitive and physical function and activities of daily living (grade B). Drug therapy for a poststroke depressive state is recommended because it is expected to improve depressive symptoms and physical function (grade B).

Both guidelines recommend treatment in specialized care units (in the chapter of Stroke in General in the Japanese guidelines). All patients with acute ICH should preferably be treated in stroke units or in intensive care units if the patient condition requires this, because stroke unit care reduces mortality and increases the likelihood of good functional outcome of stroke in general. Due to a variety of similarities between acute ischemic stroke and ICH, it seems to be plausible that the specialized treatment might also be beneficial for patients with ICH (level C). Early mobilization and rehabilitation unless intracranial hypertension is present is recommended only in EUSI guidelines (class IV evidence).

Acknowledgments

We would like to thank Drs. Norio Tanahashi (Saitama Medical University International Medical Center) and Masayasu Matsumoto (Hiroshima University Graduate School of Biomedical and Health Sciences) for their valuable advice.

References

