Angiogenesis, Lymphangiogenesis and Clinical Implications
Gianni Marone
Francescopaolo Granata
Department of Translational Medical Sciences
and Center for Basic and Clinical Immunology Research
University of Naples Federico II
School of Medicine
Naples (Italy)
To Graziella Persico
whose life and science continue to inspire us
Contents

XI Preface
Marone, G.; Granata, F. (Naples)

1 History of Research on Angiogenesis
Ribatti, D. (Bari)

1 Abstract
2 First Isolation of an Endothelial Cell
2 Development of in vivo Assays for the Study of Angiogenesis
4 Isolation of Basic Fibroblast Growth Factor
4 Isolation of Vascular Permeability Factor/Vascular Endothelial Growth Factor
5 Isolation of Placental Growth Factor
5 Early Evidence of Tumor Cells Releasing Specific Growth Factor for Blood Vessels
6 Absence of Angiogenesis in Tumors in Isolated Perfused Organs and First Evidence of the Existence of the Avascular and Vascular Phases in Solid Tumor Growth
7 First Formulation of the Hypothesis that Tumor Growth Is Angiogenesis Dependent and Isolation of the First Tumor Angiogenic Factor
7 Prognostic Significance of Tumor Vascularity
8 Antiangiogenesis
13 References

15 Immune Cells as a Source and Target of Angiogenic and Lymphangiogenic Factors
Loffredo, S.; Staiano, R.I.; Granata, F.; Genovese, A.; Marone, G. (Naples)

15 Abstract
17 Expression of VEGFs and Their VEGFRs in Mast Cells
19 Expression of VEGFs, Their VEGFRs and NRPs in Human Basophils
20 Expression of VEGFs and VEGFRs in Monocytes, Macrophages and Dendritic Cells
20 Monocytes
20 Macrophages
21 Angiogenic Activity of Macrophages
23 Antiangiogenic Activity of Macrophages
23 Lymphangiogenic Activity of Macrophages
24 Dendritic Cells
24 Expression of NRPs in Regulatory T Cells
25 Expression of Angiopoietins in Immune Cells
25 Mast Cells and Basophils
26 Eosinophils
26 Neutrophils
26 Macrophages
27 Direct and Indirect Angiogenic Activity of IL-17
99 Chemokines in Lymphangiogenesis
99 Nonchemokine Chemoattractants in Angiogenesis
101 Concluding Remarks
102 References

105 Role of uPA/uPAR in the Modulation of Angiogenesis
Montuori, N. (Naples); Ragno, P. (Salerno)

105 Abstract
106 Plasminogen Activation System
108 uPA Receptor
110 uPA/uPAR Functions
112 uPA/uPAR in Angiogenesis
116 uPA-uPAR in Endothelial Progenitor Cells
117 PAI1 and Angiogenesis
118 Conclusions
119 References

123 Neutrophil-Derived Cytokines Involved in Physiological and Pathological Angiogenesis
Tecchio, C.; Cassatella, M.A. (Verona)

123 Abstract
124 VEGF: A Key Molecule for Neutrophil-Mediated Angiogenesis
125 Physiological Conditions
126 Pathological Conditions
128 PK2/BV8: A Recently Uncovered Mediator of Neutrophil-Induced Angiogenesis
128 Physiological Conditions
129 Pathological Conditions
129 Other Neutrophil-Derived Cytokines and Chemokines with Proangiogenetic Activity
129 CXCL8/IL-8
130 Oncostatin M
131 Neutrophil-Derived Proangiogenic Cytokines Awaiting Further Research in the Angiogenesis Field
131 Fibroblast Growth Factor-2
132 Angiopoietin 1
132 Interleukin-17
132 Conclusions
133 Acknowledgements
134 References

138 Roles of Eosinophils in the Modulation of Angiogenesis
Nissim Ben Efraim, A.H.; Levi-Schaffer, F. (Jerusalem)

138 Abstract
138 Allergic Inflammation
140 Angiogenesis and Allergic Inflammation
141 Eosinophils
143 Eosinophils and Angiogenesis
146 Hypoxia and Eosinophils
149 Acknowledgement
149 References

155 Regulatory T Cells, Leptin and Angiogenesis
Pucino, V.; De Rosa, V.; Procaccini, C. (Napoli); Matarese, G. (Salerno)

155 Abstract
155 Regulatory T Cells, Leptin and Metabolic Regulation
158 Leptin, Endothelial Cell Function and Angiogenesis
Angiogenesis, namely the formation of blood vessels, plays a fundamental role in such diverse physiological processes as embryonic and postnatal development, reproductive functions, and wound repair. It was Judah Folkman who, in 1971, first suggested that angiogenesis is a major factor also in tumor growth, and proposed that blockade of angiogenesis might represent a novel therapy for solid tumors. Since then, we have witnessed explosive progress in our understanding of the molecular mechanisms governing the growth and differentiation of new blood vessels.

A major breakthrough in this field came when Harold Dvorak and collaborators purified and named the vascular permeability factor that was later cloned and designated ‘vascular endothelial growth factor’ (VEGF), which is the most potent proangiogenic mediator known so far. The VEGF family is constituted by five members (VEGF-A, VEGF-B, VEGF-C and VEGF-D) and placental growth factor. Placental growth factor was identified and named by the late Graziella Persico, an extraordinary and brilliant investigator to whom this volume is dedicated. Evidence obtained in recent years indicates that the lymphatic vascular system is crucial not only in tumor growth and the formation of metastases, but also for the modulation of immune functions and fat metabolism. Although VEGF-C and VEGF-D are the key growth factors that can directly stimulate lymphatic endothelial cells, the other growth factors have also been implicated in lymphangiogenesis.

Notwithstanding the concept that both angiogenesis and lymphangiogenesis are essential for tumor growth, there is increasing evidence that the two aspects play an important role in an increasing number of immune disorders and metabolic diseases. Another important issue is the observation that although tumors are a major source of angiogenic/lymphangiogenic factors, several cells of the innate and adaptive immune system can produce a distinct set of these factors. Moreover, it has been shown that several angiogenic/lymphangiogenic factors can exert a variety of proinflammatory effects by engaging VEGF receptors and angiopoietin receptors (Tie1 and Tie2) present on immune cells.

Given the rapid advances made in this field, it is difficult to produce a timely reference text and a comprehensive overview of the field. Despite these difficulties, I accepted the invitation of the editors of the Chemical Immunology series to produce a
volume entitled ‘Angiogenesis, Lymphangiogenesis and Clinical Implications’. This work was designed to highlight some of the results obtained mainly with human immune cells as a source and target of angiogenic and lymphangiogenic factors. The clinical part of the volume deals with some of the disorders in which treatment with antiangiogenic molecules appears to be promising.

It is already obvious that several issues remain to be solved in this area. The spectrum of angiogenic and lymphangiogenic factors produced by the different components of the human innate and adaptive immune system is still largely unknown. Similarly, the specific and selective distribution of receptors and coreceptors for the different angiogenic and lymphangiogenic molecules on immune cells is incomplete. Moreover, it is becoming evident that there are striking differences in the mediators and their receptors between human and rodent immune cells. Although angiogenesis and lymphangiogenesis are important in tissue remodeling in certain chronic inflammatory disorders (e.g. bronchial asthma, rheumatoid arthritis, psoriasis), it is still unknown whether alterations of angiogenesis and lymphangiogenesis could be a target in these disorders.

Many contributors to this volume are working or have worked in Italian research centers. This probably reflects the fact that thanks to Graziella Persico, many of her friends and pupils found the various aspects of angiogenesis and lymphangiogenesis a fertile field of study.

I would like to thank Karger Publishers and their staff for their assistance throughout the production of this volume. This volume owes much to the stimulating intellectual environment provided by our collaborators at the Division of Clinical Immunology and the Center for Basic and Clinical Immunology Research (CISI) of the University of Naples ‘Federico II’.

Gianni Marone, Naples
Francescopaolo Granata, Naples