Artificial Nutrition and Intestinal Mucosal Barrier Functionality

Chrysostomos D. Anastasilakis, Orestis Ioannidis, Athina I. Gkiomisi, Dimitrios Botsios

Departments of Pharmacology and Obstetrics and Gynaecology, 424 General Military Hospital, and Fourth Surgical Department, Medical School, Aristotle University, Thessaloniki, Greece

Introduction

Total parenteral nutrition (TPN) has significantly improved the survival of patients with loss of functional or anatomical integrity of the gastrointestinal tract (GI). On the other hand, food passage through the GI ensures operational efficiency of an important immune defense mechanism, the lymphatic tissue of the intestinal mucosa [mucosal-associated lymphoid tissue (MALT)]. Clinical studies of multitrauma patients have shown that TPN application, as opposed to enteral nutrition (EN), was accompanied by significantly higher rates of hospital-acquired pneumonia, septic intra-abdominal collections and possibly multiple organ failure syndrome [1–4].

Anatomy and Physiology of Intestinal Mucosal Barrier

Intestinal epithelium has a complex role as it allows absorption and excretion of substances necessary for body homeostasis and at the same time acts as a barrier to various pathogens or their products. The anatomical and physiological integrity of the intestinal mucosal barrier (IMB) is therefore essential. The intestinal mucosa covers the intestinal lumen in all its length and consists of three layers, which from the outside to the inside are (i)
the basement membrane (lamina propria); (ii) the mucosal muscular layer, and (iii) the epithelium covering the intestinal villus and crypts [5, 6]. The main groups of basic structural component of mucosa are presented in detail in figure 1 [5] and immunological and non-immunological defense mechanisms of IMB [5, 6] in figure 2.

Deprivation of Enteral Nutrition

TPN solutions are extremely hyperosmolar and are infused into a large central vein, so that the high blood flow will dilute rapidly the hypertonic solution. Caution is needed given that central venous catheters are often the source of septic complications. In addition, patients receiving TPN are at increased risk for intraperitoneal septic complications and hospital pneumonia, compared to patients under EN or with no nutritional support [7].

In one of the first studies dealing with these complications, Moore and Jones [1] randomized trauma patients in those receiving EN and those receiving intravenous (IV) hypertonic glucose solutions. The EN group had showed significantly fewer septic complications and abdominal septic abscesses. In another study, in patients with similar injury severity, those who received EN exhibited significantly lower rates of septic complications and hospital pneumonia and a lower trend for intraperitoneal abscesses compared to patients receiving TPN [2]. Kudsk et al. [3] randomized 98 patients with extremely severe abdominal trauma and high severity index trauma in two groups: enteral and iso-protein-isothermal parenteral nutrition (PN). Once more, hospital pneumonia, intra-abdominal abscesses, septic complications of the IV catheter, and septic episodes per patient were more frequent in the group of PN. Interestingly, the greatest differences between the two groups were observed in the patients with the more severe injuries. Despite the findings of all the above studies, the hypothesis that TPN has an unfavorable effect on gut immunity, although attractive, is yet unproven. There is no direct evidence in human models that TPN promotes bacterial overgrowth, impairs neutrophil functions, inhibits blood’s bactericidal effect, or causes villous atrophy. Thus TPN may be more expensive than EN, but it does not seem to be less safe [8]. It is probably the lack of EN rather than reduced GI immunity or the absolute caloric intake that is responsible for many of the adverse effects of TPN such as induction of villus atrophy, epithelial cell apoptosis, and increasing of mucosal permeability [9].

A 6-day treatment of catabolic rats with 25% EN and 75% PN has no appreciable benefits in small intestine cellularity and immunity [10]. On the other hand, EN should be preferred over TPN in the nutritional support of patients with acute pancreatitis, because it is cheaper and is associated with suppression of the immune inflammatory response, has fewer septic complications, a reduced need for surgical management of pancreatitis complications and a reduced hospitalization period, but does not seem to affect mortality or the rate of non-septic complications [11].

Specific dietary factors that are added to solutions of artificial EN appear to provide additional protection. Moore et al. [4] managed to reduce the rate of intra-abdominal abscesses and multiple organ dysfunction syndrome (MODS) in trauma patients using an immunostimulative solution of EN enriched with glutamine (GLN), n–3 fatty acids and nucleotides. Similarly, high-risk patients [12] fed a special immunostimulative solution had a significantly lower rate of intra-abdominal abscesses compared with patients fed an equal caloric and protein value standard EN solution, and even lower than patients without nutritional support. Several factors have been proposed as responsible for septic complications after TPN administration. One hypothesis attributes these complications in bacterial translocation (BT) from the in-
testinal lumen in remote locations via the mesenteric lymph vessels and systemic circulation. It has been shown that lack of food in the intestinal tract disrupts the functional integrity of the IMB, allowing BT [13]. A significant intestinal mucosal defense factor, the intestinal alkaline phosphatase, has the ability to detoxify lipopolysaccharides and prevent bacterial invasion across the IMB, and its expression and function are lost during starvation while maintained by EN [13].

Bacterial Translocation

BT is the phenomenon during which living microorganisms or their products or both cross the intestinal barrier and enter the systemic circulation. After crossing the barrier, these elements initially reach the mesenteric lymph nodes (MLNs) and then, using the liver or spleen as intermediate stations, enter the systemic circulation [14]. The presence of bacteria in numbers $>10^{12}$/ml on the 200-m2 surface of the intestinal lumen and the fact that only one layer of epithelial cells, the intestinal barrier, separates this population from the sterile environment of the inner organs, raised scientific interest and led to studies aiming to clarify how bacteria could pass through the barrier [15].

An experiment in dog models showed that bacteria and toxins can cross the intestinal barrier and enter the systemic circulation [16]. Later it was proposed that the intestinal lumen could serve as a reservoir of bacteria that could penetrate the intestinal barrier and cause sepsis. In intensive care units, the syndrome of systemic inflammatory response syndrome (SIRS) and MODS represent the most frequent cause of death, with the exception of brain damage or bleeding during the first 48 h. In such cases, although in many patients the infection site is evident in others, no source of infection is found. The pathogenesis of this phenomenon remains unknown; however, several studies support the theory of BT. Bacteria can escape the IMB causing fatal syndromes [17] and BT has been linked to SIRS, acute respiratory distress syndrome and MODS [18]. Mucosal barrier permeability is increased in sepsis, trauma, burns and vascular or major abdominal surgery [19–22].

A small amount of low residual diet could prevent decreases in gut mucosal integrity in Donryu rats [23]. The integrity of mucosal barrier is critical for prevention of BT in acute pancreatitis. In this setting, adequate oxygen delivery and nutrient supplementation may be proven helpful [24].

A common feature of BT is the mechanism of ischemia-reperfusion. The hypoxia in the intestinal mucosa
is often more pronounced than in other tissues because in case of shock the redistribution of blood to protect vital organs results in reduced blood flow in the intestine compared with other organs. The decreased blood flow in turn causes acidosis because of anaerobic metabolism and lactic acid production. The production of free oxygen radicals (O₂⁻) breaks down the cytoskeleton of the intestinal cells and increases their permeability. The free radicals may also affect the intestinal barrier through activation of the granulocytes [15]. Normally, bacteria that cross the intestinal barrier are destroyed by the phagocytes before entering the systemic circulation. Therefore, malfunction of the intestinal lymphatic tissue [gut-associated lymphoid tissue (GALT)] is a prerequisite for BT [15]. Other factors that affect the integrity of the intestinal barrier include the overproduction of nitric oxide (NO) and interleukin (IL)-6, alcohol consumption, non-steroidal anti-inflammatory drugs, and common bacteria such as *Escherichia coli* and *Klebsiella pneumoniae*. Normal levels of NO have antibacterial properties, thus protecting the IMB. However, NO overproduction has the exact opposite effect, being toxic for the cells of the intestinal epithelium [15]. Thus, NO synthase is an important mediator of intestinal barrier dysfunction and administration of its inhibitor S-methylisothiourea is useful in the prevention of diet-induced barrier failure [25].

Fig. 3. Route of entrance of germs or toxins in the systemic circulation.
The bile salts are non-immunological protectors of the IMB. The bile salts interact with endotoxins in the intestinal lumen resulting in the formation of less permeable molecules. Reduced production of bile salts and the consequent disruption of normal flora could explain BT in case of obstructive jaundice, cirrhosis or hepatectomy [26–28]. Immunonutrition may protect the gut barrier function more effectively in rats with SIRS [29], can protect IMB in rats with operative stress, increase the expression of occludin, maintain the gut epithelial tight junction, and eliminate gut BT [30]. Also, it may contribute to the maintenance of IMB integrity. In dogs with severe acute pancreatitis, EN for 7 days significantly decreased the serum levels of amylase, aminotransferase and albumin, the plasma endotoxin, and the incidence of BT, and alleviated inflammation in the pancreas and injury in the ileum [31].

Although simple calorie-protein starvation does not cause BT, addition of a non-enteral inflammatory factor dramatically increases the BT from the intestinal lumen to the MLNs, liver, spleen, and lungs. Despite these experimental data, a link between BT and MODS or non-enteral septic complications has not been established in humans [7]. Moreover, Moore et al. [32] found no BT in blood cultures from the portal vein of multitrauma patients during the immediate posttraumatic period. BT may take place by two routes: by blood circulation or by lymphatic drainage presented in detail in figure 3.

Several studies have attempted to clarify which of the two routes is the mainstream of BT in systemic circulation. Moore et al. [32] collected portal blood samples from 20 patients hospitalized in the intensive care unit after trauma surgery. During the initial surgery a catheter was placed in the inferior vena cava of these patients to draw blood at 6, 12, 24, 48 h and 5 days postoperatively in order to grow cultures and measure endotoxin levels. Only 2% of the obtained cultures were positive and no correlation between the endotoxinemia and the subsequent development of SIRS/MODS was observed. These results contradicted the hypothesis that BT could cause SIRS and MODS and led to the investigation of alternative BT routes, mainly the lymphatic drainage. Animal studies have shown that MLNs are the first and often the only organ containing migrating microorganisms and that endotoxin levels were elevated in the major thoracic duct [33]. These observations led to the hypothesis that sepsis and organ failure could be caused by substances transferred from the intestine to the systemic circulation through the lymphatic system and not the bloodstream [33]. Deitch and co-workers [34] found that separation of the major thoracic duct from the systemic circulation may prevent the development of SIRS/MODS in rats after trauma and that components of lymph and not of portal blood can stimulate the immune system. Since no bacteria were found in the cultures of MLNs and endotoxin levels were undetectable, a direct effect of bacteria or endotoxins to damage distant organs.
must be ruled out. These results were in accordance with a clinical trial investigating the lymph in patients hospitalized in intensive care units. In these patients, the lymph of the major thoracic duct was bacteria-free and very low endotoxin levels were detected. No correlation was found between patients with detectable endotoxin levels and those who developed MODS [35]. The intestine produces non-bacterial proinflammatory agents, which may enter the systemic circulation through the lymphatic drainage and cause systemic inflammatory response regardless of the presence of germs or endotoxins. Furthermore, bacteria and endotoxins may cross the intestinal barrier and be trapped in the intestinal wall or MLNs, where they stimulate the production of various cytokines by the lymphatic system contributing to the systemic inflammatory response. However, this ‘local’ BT presupposes the elimination of the intestinal barrier. The three-hit model of intestine involvement in the onset of systemic inflammatory response appears in figure 4. It has been suggested that intestinal permeability is markedly increased after burns and is positively correlated to the gut-derived endotoxinemia. Early enteral feeding in severely burned patients and in acute pancreatitis may decrease intestinal permeability, preserve the IMB and have a beneficial effect on the reduction of enteric infection [36, 37].

Given the conflicting results on the BT, an attempt to find an alternative mechanism to explain increased frequency of hospital pneumonia and intra-abdominal abscesses in patients not treated with EN was made based on the immune response of the intestinal mucosa.

Mucosal Immunity

Gut stimulation after feeding induces a generalized immune response in the human MALT through a mucosal immune network. Examples include the influence of enteral feeding in the neonatal development of the GALT, the presence of antigen-specific IgA-secreting cells and antigen-specific IgA in distant mucosal sites, such as the breast, after exposure to intestinal luminal antigen, and the isolation of IgA-producing cells from the peripheral blood [38]. The GALT is an essential compartment of the immune system. First of all, it has immunologic control over endogenous intestinal flora. Furthermore, GALT protects other distant organs such as lungs, nasopharynx, the mammary gland and the genitourinary system. The GALT is part of the larger MALT. The GI not only absorbs nutrients but also has an important immunologic role during health and critical illness. Under certain experimental and clinical conditions, stimulation by feeding of the intestine attenuates stress response, avoids mucosal atrophy and decreases permeability. A better understanding of intestine function and nutrient absorption has clinical implications in the treatment of critically ill patients [39]. After 5 days of treatment, a small amount of EN partially reverses PN-induced GALT changes, suggesting beneficial but limited effects on gut mucosal immunity. More specifically, Peyer’s patch (PP) lymphocyte numbers and small intestine IgA levels increased EN amount-dependently, whereas lamina propria lymphocyte numbers increased EN amount-independently [40]. Stimulation of GALT through EN is the key to the preservation of normal intestine bacterial flora and thus mucosal-derived immunity [41]. Lymphotoxin β-receptor (LTβR) expression is critical for GALT control mechanisms and intact mucosal immunity. Lack of enteral stimulation with PN reduces LTβR expression, PP lymphocytes and intestinal IgA production. PN significantly reduced PP lymphocyte mass, human mucosal addressin cell adhesion molecule-1 (MAdCAM-1) mRNA, and intestinal IgA. As anticipated, LTβR blockade in chow animals significantly decreases transcription of MAdCAM-1 gene and PP lymphocyte mass but not intestinal IgA, because chow feeding was maintained. Both LTβR blockade and PN decreased IgA, but not significantly. The major mechanism for decreased GALT cells in absence of enteral stimulation is inadequate LTβR signaling [42, 43].

Microfold cells (M cells) are cells found in the follicle-associated epithelium of the PP. They transport organisms and particles from the gut lumen to immune cells across the epithelial barrier, and thus are important in stimulating mucosal immunity. M cells have the unique ability to take up lumen antigen of the small intestine via endocytosis or phagocytosis, and then deliver it via transcytosis to dendritic cells and lymphocytes which then enter as activated lymphocytes in PP, with the help of the MAdCAM-1 [44]. The sensitized lymphocytes are dispersed through the thoracic duct and systemic circulation in various submucosal positions, forming part of the centripetal part of the GALT. The basic membrane of the intestinal layers is one of the places that concentrates the activated T and B lymphocytes, where B lymphocytes become plasma cells and produce immunoglobulin A (IgA). After that, the polymerized IgA, being enriched with specific secretory factor epithelial cells, receptor of polymerized IgA, is transported from the submucosal space within the intestinal lumen [44].
One of the main defenses of the GI is the synthesis and secretion of IgA, as more than 70% of the cells that produce IgA are located in the intestine. Chow and complex enteral diets maintain a normal balance between IgA-stimulating and IgA-inhibiting cytokines while preserving normal antibacterial and antiviral immunity. The IgA-stimulating cytokine IL-4 levels decrease significantly in mice receiving intragastric (IG) or IV nutrition along with IgA levels, whereas IL-10 decreases significantly only in mice receiving IV nutrition. These data are consistent with severely impaired mucosal immunity with IV nutrition and partial impairment with IG nutrition and provide a cytokine-mediated explanation for the reduction in diet-induced mucosal immunity [45, 46].

Exogenous treatment with combination of PN and IL-7 for 5 days reverses PN-induced impairment of resistance to respiratory tract infections (bacterial pneumonia) associated with increased secretory IgA levels [47]. IL-7 treatment during PN appears to have beneficial effects on gut immunity, but other therapeutic methods are needed to restore secretory IgA levels. IL-7 dose-dependently restores PN-induced GALT cell loss but does not improve intestinal IgA levels [48].

IgA inhibits both the adherence of bacteria in the intestinal mucosa and their proliferation, while it inactivates the toxins produced by the bacteria and inhibits the absorption of antigens from the intestine [5, 6]. PN impairs airway mucosal immunity by reduction in IgA available for transport rather than via a reduction in polymeric immunoglobulin receptor levels. In the small intestine, diminished polymeric immunoglobulin receptor is implicated in the deterioration of antibody-mediated mucosal immunity [49].

In animals, particularly mice, lack of intraluminal food stimulus results in a rapid, dramatic thickness of the basic membrane of the intestinal mucosa and reduction of total intraepithelial lymphocytes number in PP. In 72 h from interruption of the starvation, the B cells of PP and of basic membrane are reduced by 55–60% and T cells by 40% [50]. At least partly responsible for this reduction is MadCAM-1, as it directs the non-sensitized lymphocytes in the PP, and sensitized ones to the basic membrane. Both TPN and fasting downregulate MadCAM-1 mRNA and protein levels in PP. The MadCAM-1 changes are due to lack of enteral stimulation rather than toxic effects of PN. PN rapidly downregulates MadCAM-1 gene expression [51]. Specifically after 8 h of PN, MadCAM-1 mRNA levels decreased 20% while in 5 days the decrease in Mad-CAM-1 mRNA was 64% and in MadCAM-1 protein levels 30%. Fasting decreased MadCAM-1 mRNA levels by 16% at 1 day and 30% at 2 days, compared with chow [51].

In animals, nutrition support with TPN for only a few hours leads to a significant decrease in MadCAM-1 expression in PP, while its levels rapidly return to normal after restoration of EN [52]. Furthermore, lack of intraluminal food stimulus causes imbalance in the cytokines that control lymphocyte maturation resulting in a decrease in CD4/CD8 ratio. CD4 lymphocytes produce IL-4 and IL-10, which stimulate IgA production [53]. Decreased enteral stimulation significantly alters key mucosal immune chemokine protein levels at multiple sites. PP chemokine (C-X-C motif) ligand 13 (CXCL13 protein) and small intestine chemokine (C-C motif) ligand 20 (CCL20) and chemokine (C-C motif) ligand 25 (CCL25 protein) levels significantly decreased, whereas chemokine (C-C motif) ligand 21 (CCL21 protein) increased significantly in the parenterally fed group. Chemokine (C-C motif) ligand 28 (CCL28) decreased significantly in the small intestine and lung of IV fed animals. mRNA levels changed in the opposite direction (compared with protein) for all chemokines except CCL28 [54].

In animals, TPN reduces IL-4 and IL-10 levels in the intestine, while it increases interferon-γ (IFN-γ), which inhibits the production of IgA [45]. PN reduces in vivo IL-4 levels in PP (consistent with lower MadCAM-1 expression) and IL-4 and IL-10 levels in gut homogenates compared with chow. Despite MadCAM-1 blockade, enteral feeding preserved gut IL-4 levels and increased IL-10 levels consistent with preserved IgA levels [55]. Enteral feeding affects MadCAM-1 expression. Complete MadCAM-1 blockade reduces GALT lymphocytes to PP levels, but the chow feeding stimulus preserves IgA and early antibacterial resistance, implying the existence of non-MadCAM-1 mechanisms that preserve mucosal immunity [56].

TPN administration reduces without completely inhibiting IgA transportation across epithelium [57]. Of note, 3-day EN deprivation caused persistent reductions in IgA levels, not only in the intestinal lumen but also in the tracheobronchial complex [57]. A 5-day PN significantly reduces virus-specific IgA in nasotracheal washes and suppresses the selective transport index, suggesting impaired mucosal transport of polymeric (p)IgA. PN with specific antiviral plgA in animals resulted in extinction of the virus from the airway and restoration of mucosal protection, suggesting sufficient residual transport may be the most important factor in maintaining respiratory tract IgA-mediated immunity [57].
of a specific protein receptor that transports IgA is regulated by IFN-γ and IL-4. TPN does not affect IFN-γ but reduces IL-4 levels and therefore IgA receptor expression and subsequently the rate of transportation through the epithelium [58]. Lowering of intraluminal IgA as a consequence of enteral feeding deprivation is likely to be responsible for the higher frequency of hospital pneumonia in patients supported with PN. It was found that in animals immunized with Pseudomonas aeruginosa administration of a lethal dose of this germ 5 days after the initiation of TPN resulted in mortality of 70% higher than orally fed animals. The mortality rate of the latter was comparable to that of non-immunized animals, implying loss of specific antibacterial immunity [59]. In a similar study, after 5 days of TPN, influenza virus was administered intranasally in animals immunized against it. Two days later, nasal secretions of half the animals still contained the virus. On the contrary, the virus had disappeared completely in all animals fed with EN [60].

Peritoneal Reaction

In animals receiving TPN, the reaction of the peritoneum in intraperitoneal infectious causes may be manifested in various ways. In animals fed parenterally, intraperitoneal injection of bacteria caused significant reduction of the exudative cells in the peritoneal cavity compared with mice fed orally [61]. This reduction was attributed to weak peritoneal response to TNF-α, increased proliferation of bacteria and intense response of vascular inflammatory cytokines. Ikeda et al. [62] studied the peritoneal reaction in a model of aseptic peritonitis, caused by intraperitoneal injection of 1% glycerol solution. Four hours after the injection, mice undergoing TPN had a significant reduction of all leukocyte subpopulations including neutrophils, lymphocytes and macrophages. Interestingly, the addition of 2% GLN in the PN solution restored the above abnormalities.

Vascular Inflammatory Reaction

Mucosal immune dysfunction caused by lack of enteral feeding is likely to be involved in the pathogenesis of MODS, due to severe, non-infectious systemic inflammatory response. Neutrophils and lymphocytes are known to have a central role in the pathogenesis of both non-specific immune inflammation response and multiple organ failure [63]. The vascular system of the GI sensitizes cells which, once activated, react to harmful stimuli, causing further tissue damage. Compared with EN regimens, TPN renders neutrophil more prone to activation, thus increasing their concentration in the GI. Intercellular adhesion molecule-1 (ICAM-1) is the endothelial homologous molecule of complex CD11/18 integrin. ICAM-1 promotes neutrophil settlement in the endothelium and their maturation rendering them capable of passing through the endothelial cells [64]. The IFN-γ is a potent stimulator, while IL-4 and IL-10 are potent inhibitors of ICAM-1 expression. Lack of EN does not affect IFN-γ levels but significantly reduces IL-4 and IL-10 production [65]. Therefore, reduced expression of ICAM-1 in the endothelium of visceral vessels in patients receiving PN may be attributed to alterations in the production of these cytokines.

The adhesion of neutrophils to vascular endothelium is also influenced by P- and E-selectin. These adhesion molecules are expressed on the surface of endothelial cells and favor the flow of leukocytes along the endothelium of postcapillary veins. This flow leads to agglutination, through the action of the CD11/18 integrin and ICAM-1 complex. TPN increases the expression of P-selectin in the vascular endothelium of the GI and of E-selectin in the vessels of the lung [66]. The elevated levels of myeloperoxidase (MPO) in the GI of animals receiving TPN support the hypothesis that neutrophil concentration is associated with increased expression of adhesion molecules [67]. However, ICAM-1 and MPO levels were restored 4 h after oral refeeding. It seems that lack of EN causes a transient, non-specific inflammatory reaction which is mainly characterized by dysfunction of visceral vascular endothelium and which promotes neutrophil activation. This promotion of activation becomes evident when a second stimulus is applied in rats receiving TPN. Meyer and Kudsk [7] studied animals receiving TPN for 5 days and then subjected to a temporary complete obstruction of the upper mesenteric artery for 15 min. They reported that

<table>
<thead>
<tr>
<th>Table 1. Potential mechanisms of action of the nutritional agents [72, 73]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissociation of intraluminal antigens</td>
</tr>
<tr>
<td>Modulation of the bowel immune response</td>
</tr>
<tr>
<td>Improvement of the antioxidant status</td>
</tr>
<tr>
<td>Modified uptake of PUFAs (n−6/n−3 fatty acids)</td>
</tr>
<tr>
<td>Restoration of function of the IMB</td>
</tr>
<tr>
<td>Regulation of the intestinal microflora</td>
</tr>
<tr>
<td>Regulation of intestinal motility</td>
</tr>
<tr>
<td>Regulation of bile-pancreatic secretions</td>
</tr>
</tbody>
</table>

200

Digestion 2013;88:193–208
DOI: 10.1159/000353603

Anastasilakis/Ioannidis/Gkiomisi/Botsios
72 h after the restoration of blood supply the mortality was much higher in animals fed with TPN compared to those with oral feeding or enteral feeding or IG infusion of TPN solution before mesenteric artery obstruction (40 vs. 5–10%, respectively). Furthermore, 3 h after the ischemic event, vascular permeability of the lung and liver were significantly higher in animals with TPN compared with those fed from the gut. Finally, while the expression of CD11a and CD11b (neutrophil activation markers) before the ischemic event was similar in all groups of animals, 3 h later, CD11b expression was significantly increased only in animals fed with TPN, and the expression of CD18 increased only in the lungs of these animals, suggesting increased activation of myeloid cells.

Composition of Enteral and Parenteral Nutrition Solutions

Nutrient availability, enteric nervous system stimulation, and nutrient delivery affect mucosal immunity and may influence immunologic barriers and the inflammatory response [68]. There is evidence that EN and PN, in diseases accompanied by mucosal barrier dysfunction, interact with the intestinal barrier and the immune system, by promoting wound healing and regulating T-cell function, enhancing the mucosal defense against BT and systemic inflammation [69]. There seems to be a diversification in the function of mucosal host defenses between EN and PN [70]. Therefore, EN, if tolerated, represents the feeding route of choice [71]. In table 1, we demonstrate potential mechanisms of action of the nutritional agents [72, 73].

Lung lymphotoxin β-receptor expression (LTβR) is maintained with any diet in enteral feeding, whereas intestinal LTβR levels are maintained only with complex enteral diets. In contrast, intravenous PN significantly reduced both intestinal and lung LTβR, while IG administration of the PN solution reduced only intestine LTβR levels [74]. Thus, LTβR preserves respiratory tract immunity when a non-complex, chemically defined enteral diet is administered, whereas intestinal immunity is compromised with the same diet [74]. EN support is preferred in surgical patients for preserving gut mucosal integrity [75]. Blood flow distribution depends on nutrient composition. Feeding with elemental solution compared with oral feeding partially suppresses the activity of intestinal lymphoid tissue but not in the magnitude that complete absence of the lumen dietary stimulus does [59]. On the other hand, there are clear differences when the same elemental solution is administered intravenously. Immunized animals exhibit 88% mortality from bacterial pneumonia when fed with TPN, 57% when the same solution is given intra-abdominally and only 10% when fed exclusively with intestinal macromolecular solution of artificial feeding [59]. Prior antigenic immunization can protect against bacterial pneumonia. This protection is lost with intravenous TPN, partially preserved with a chemically defined enteral diet, and completely preserved with chow or complex enteral diets [59]. Various nutritional agents have been tested in inflammatory bowel diseases as alternative treatment, including antioxidants (GSH, vitamins A, C and E, selenium and zinc), lipids [n–3 polyunsaturated fatty acids (PUFAs) and short chain fatty acids], amino acids, prebiotics and probiotics, N-acetyl-D-glucosamine (GlcNAc), and dietary particles [76]. Specific probiotic lactobacteria and plant fibers such as inulin may dramatically reduce the inflammation and the infiltration of organs such as the lungs by neutrophils, thereby controlling inflammation and eliminating unwanted pathogens, such as antibiotic-resistant microorganisms and Clostridium difficile [76]. Ischemia/reperfusion disrupted the structure of intestinal tight junctions and reduced occludin expression. n–3 PUFAs in male Sprague-Dawley rats, by gavage for 7 days before ischemia/reperfusion, indicates that n–3 PUFAs protect the intestinal barrier by elevating occluding and intracellular intestinal fatty acid-binding protein (I-FABP) in plasma while decreasing in cells, activating the peroxisome proliferator-activated receptor-γ pathway, and then upregulating intestinal tight junction protein expression. A peroxisome proliferator-activated receptor-γ agonist had the same effect as n–3 PUFAs [77]. Table 2 summarizes some interesting studies about the effects of PN and EN solutions to the immune system [78–83].

Intestinal Nervous System

As mentioned above, complete macromolecular solution of intestinal artificial nutrition, mimicking normal oral feeding, ensures functional integrity of the intestinal immune system compared with elemental solutions. The combination of all nutrients is considered to have an overall stimulatory effect in the lymphatic tissue of the intestine and is exerted through neurotransmitters and peptide transmitters. The interactions of lumen dietary stimuli with the lymphoid tissue and intestinal nervous system have been documented [84]. Within the intestinal...
There is a dense nerve plexus and neuropeptides, released from this dense neural network, regulate the bowel’s movement, secretory function, development as well as mucosal defense mechanisms.

The neuropeptide that regulates gastrin secretion is produced by the intestinal nervous system. Exogenous administration of bombesin (BBS), an analogue of this peptide isolated from frogs, restores the TPN-induced intestinal lymphatic system atrophy and respiratory defense mechanism dysfunction [85].

Long-term PN reduces the size of ileal PP, the number of microspheres that was taken up into the follicle-associated epithelium of lymphoid nodules, and the number of intraepithelial lymphocytes within the follicle-associated epithelium near the perifollicular crypts of PP and the area of PP surface occupied by M cells. These effects were strikingly milder with BBS administration, although no structural changes of the M cells in PP were observed. Thus, BBS seems to regulate the formation and particle transport by M cells, through stimulation of lymphoid cells in PP epithelium near perifollicular crypts, where M cells and other constituents of lymphoid follicle epithelium are generated, and thereby preserving mucosal immunity. In conclusion, BBS prevents the PN-induced atrophy of GALT, the reduction of M-cell numbers, and the decrease in particle transport by M cells during long-term PN [86]. Although MadCAM-1 is considered the gateway molecule for cell entry into mucosal immunity, this does not seem to be the mechanism for mucosal immunity preservation in non-enterally fed mice receiving BBS or GLN. MadCAM-1 expression in non-PP sites is not significantly increased from TPN levels either with BBS or GLN supplementation [87]. BBS reverses the effects of TPN on intestinal and respiratory tract IgA levels and most of the effects on gut cytokines. Lamina propria cytokine mRNA levels reflect total gut cytokine concentration. TPN-fed mice have significantly lower respiratory tract IgA levels than chow- or TPN+BBS-fed mice. TPN+BBS does not increase intestinal IL-10 or its mRNA levels in lamina propria, while intestinal IL-4 levels and lamina propria mRNA expression are similar to those of chow-fed mice [88].

BBS action is applied either directly to the GALT or through stimulation of gastrin and/or cholecystokinin.

Table 2. Effects of diet composition in the intestine and immune system

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Composition and route of EN/PN solutions</th>
<th>Effect of EN/PN solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>IG administration of elemental solution in animals after 15 and 30 min of acute visceral ischemia</td>
<td>Provides the same survival rate with normal oral feeding at 15 min but a lower rate at 30 min</td>
</tr>
<tr>
<td>49</td>
<td>IG administration of elemental solution</td>
<td>Reduces lymphocyte mass in PP, basic membrane and other intraepithelial positions, reduces intraluminal IgA, IL-4, but not IL-10</td>
</tr>
<tr>
<td>72</td>
<td>Piglets, 7 days TPN with short-chain fatty acids</td>
<td>Increases small intestine IL-1β and IL-6 locally, none affect the systemic production of these cytokines or intestinal inflammation</td>
</tr>
<tr>
<td>78</td>
<td>Immune-enhancing enteral diets</td>
<td>Increases blood flow to the ileum and stimulates enteral mucosal immunity</td>
</tr>
<tr>
<td>79</td>
<td>IG administration of elemental solution</td>
<td>Reduces expression of ICAM-1 in epithelial cells of the intestinal mucosa but lesser than TPN</td>
</tr>
<tr>
<td>80</td>
<td>Elemental EN with oligomeric amino acidic chains in piglets subjected to small bowel transplantation</td>
<td>Preserves mucosal barrier, improves status of villi, contributes to a faster recovery of the barrier, limits the hypercatabolic state</td>
</tr>
<tr>
<td>81</td>
<td>In animals, EN with glutamine, fiber, and oligosaccharide</td>
<td>Prevents intestine translocation (a similar cecal bacterial population was reported in the GFO group)</td>
</tr>
<tr>
<td>82</td>
<td>PN with butyrate for 5 days</td>
<td>Restores PP lymphocyte numbers, intestinal and bronchoalveolar IgA levels, small intestine morphology, villous height and crypt depth compared to PN</td>
</tr>
<tr>
<td>83</td>
<td>Wistar rats with dextran sodium sulfate ulcerative colitis, administration of high levels of n–3 PUFAs for 8 days once a day</td>
<td>Increases neutrophil infiltration as depicted by myelohydroxidase activity, increases hematocrit and hemoglobin and shows a trend towards histopathological and clinical improvement</td>
</tr>
</tbody>
</table>
(CCK) and/or neurotensin (NT) secretion. Although PN decreases mucosal immunity outside the gut, specific nutrients, surrogates to EN, like GLN and neuropeptides such as gastrin-releasing peptide and CCK, may prevent some of the immune defects associated with PN. These factors may represent promising adjuncts to parenteral feeding, capable of maintaining immune function in patients unable to be fed via the GI [89]. Table 3 highlights the roles of BBS in the immune system [90–92].

In experimental models, simultaneous administration of either gastrin or CCK or NT with TPN had a different and in each case beneficial effect on GALT [93]. NT is a 13-amino-acid peptide stored in granules in NT-containing cells (N-cells) which are scattered in the epithelial layers of the jejunum and ileum [94]. All three neuropeptides retained the overall lymphocyte mass of PP, in basic membrane and other intraepithelial sites, maintains the CD4/CD8 ratio of basic membrane, restores intraluminal IgA levels

<p>| Table 3. Role of BBS in the intestine and immune system |</p>
<table>
<thead>
<tr>
<th>Ref.</th>
<th>Experiment</th>
<th>Effect of BBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td>TPN with BBS</td>
<td>Prevents lymphocyte reduction in PP, in basic membrane and other intraepithelial sites, maintains the CD4/CD8 ratio of basic membrane, restores intraluminal IgA levels</td>
</tr>
<tr>
<td>90</td>
<td>BBS administration</td>
<td>Restores the TPN-induced dysfunction of the IgA-dependent respiratory defense mechanism</td>
</tr>
<tr>
<td>91</td>
<td>BBS administration</td>
<td>Reduces the high mortality rate due to pneumonia (Pseudomonas) at similar levels to normally fed animals</td>
</tr>
<tr>
<td>92</td>
<td>BBS after TPN</td>
<td>Cannot normalize the increased levels of ICAM-1 and IL-10 in the intestinal lumen and completely restores TPN-induced adverse effects</td>
</tr>
</tbody>
</table>

<p>| Table 4. Role of NT in the intestine and immune system |</p>
<table>
<thead>
<tr>
<th>Ref.</th>
<th>Experiment</th>
<th>Effect of NT</th>
</tr>
</thead>
<tbody>
<tr>
<td>98</td>
<td>Elevated NT levels</td>
<td>Affects gastrointestinal motility, favors absorption and distribution of fatty acids in the body, mediates the effect of feeding in the digestive tract, pancreas, adrenals and liver, exerts a trophic effect primarily in the small intestine, stimulates mucosa growth in the colon to a lesser degree than in the small intestine</td>
</tr>
<tr>
<td>99</td>
<td>NT administration in mice treated with radiation</td>
<td>Restores the integrity of intestinal mucosa and reinforces the intestinal barrier, prevents the migration of luminal bacteria</td>
</tr>
<tr>
<td>100</td>
<td>NT</td>
<td>Connects to mast cells via high-affinity receptors, stimulates mast cells to release histamine</td>
</tr>
<tr>
<td>101</td>
<td>C. difficile toxin A in the intestinal helices of sedated mice</td>
<td>Causes an early (30–60 min) increase in intestinal mucosa NT concentration before any inflammatory reaction occurs</td>
</tr>
<tr>
<td>102</td>
<td>Previous administration of NT in mice undergoing hepatectomy</td>
<td>Stabilizes the intestinal barrier and reduces endotoxemia</td>
</tr>
<tr>
<td>103</td>
<td>Chemically defined intravenous TPN in genetically normal, immune imprinting control region mice vs. TPN via gastrostomy</td>
<td>Loss of nasal anti-influenza immunity, reduction of influenza-specific secretory IgA in the upper respiratory tract, no effect of serum on influenza-specific IgG titer vs. maintenance NT anti-influenza mucosal immunity</td>
</tr>
</tbody>
</table>
GALT. In conclusion, exogenous administration of neuropeptides, such as CCK, gastrin, and NT, represents a promising choice against bacterial invasion in patients who cannot receive EN during critical illness or after GI removal [95]. The presumptive mechanism of NT action is that the pathogenic agent binds to receptors in the luminal surface of the enterocyte, leading to production of proinflammatory cytokines. These cytokines stimulate N-cells to release NT, which in turn stimulates target cells (e.g. macrophages, mast cells, neutrophils, endothelial cells) [96]. The stimulation of NT target cells is thought to be achieved via two distinct pathways. The first is through NF-κB activation, which is primarily involved in the inflammation process, while the second is through Ras proteins and is mainly involved in cell proliferation.

Miller et al. [97] succeeded in reversing the stimulatory effect of NT on mast cells, through the NT receptor antagonist, SR48692. Besides mast cells, NT also affects neutrophils, T cells and macrophages by promoting activation, phagocytosis and cytokine release. Moreover, ad-

<table>
<thead>
<tr>
<th>Table 5. Role of GLN in the intestine and immune system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref.</td>
</tr>
<tr>
<td>87</td>
</tr>
<tr>
<td>92</td>
</tr>
<tr>
<td>111</td>
</tr>
<tr>
<td>112</td>
</tr>
<tr>
<td>113</td>
</tr>
<tr>
<td>114</td>
</tr>
<tr>
<td>115</td>
</tr>
<tr>
<td>116</td>
</tr>
<tr>
<td>117</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 6. Role of ARG in the intestine and immune system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref.</td>
</tr>
<tr>
<td>115</td>
</tr>
<tr>
<td>119</td>
</tr>
<tr>
<td>120</td>
</tr>
</tbody>
</table>
ministration of the NT antagonist, SR48692, reversed the inflammatory response through reduction of the neutrophil infiltration stabilization of the intestinal barrier inhibition of macrophage activation [97]. Table 4 highlights the roles of NT in the immune system [98–103].

Glutamine-Arginine

The addition of GLN to TPN solution significantly reduces the adverse effects of intestinal nutrition deprivation in the GALT. GLN is an important substrate for the cells of the intestinal mucosa, but it is not usually added to TPN solution, mainly due to the need for long-term stability of the solution. Replacing 2% of the protein load of the TPN solution with GLN improves the overall lymphocyte mass of the PP and the basic membrane and restores the ratio CD4/CD8 in the basic membrane and the levels of IgA in the GI and in lungs [104, 105]. It also preserves IL-4 but not IL-10 production from the gut [92, 105]. Like BBS, GLN prevents some but not all the consequences of non-specific activation of neutrophil lymphocytes. Finally, GLN improves the survival of animals after visceral or gut ischemia-reperfusion but not to the degree that normal oral feeding does, whereas arginine (ARG) may deteriorate the function of the mucosal barrier and enhance permeability [106, 107]. GLN-enriched TPN preserved both extraintestinal and intestinal IgA levels and had a normalizing effect on Th2-type IgA-stimulating cytokines [105, 108–110]. TPN reduced intestinal and respiratory IgA along with decreases in intestinal IL-4 and IL-10 compared with chow-fed animals. GLN significantly improves respiratory and intestinal IgA levels, significantly improved IL-4 compared with TPN animals, and maintained IL-10 levels midway between chow-fed and TPN animals [105, 108–110]. Table 5 summarizes evidence about the role of GLN to the intestine and immune system [111–117].

Minimal hypocaloric EN is recommended to avoid the overfeeding syndrome and gut hypoperfusion as well as early luminal delivery of pharmaconutrients (ARG, GLN dipeptides, antioxidants, butyrate) in conditions of splanchnic hypoperfusion. ARG may prevent intestinal injury due to hypoperfusion but may be harmful if ischemia is established. In contrast, GLN may be helpful in both conditions [118]. Intestinal ARG supplementation before sepsis tended to increase total lymphocyte numbers in PP and intestinal IgA secretion. Table 6 summarizes evidence about the role of ARG to the intestine and immune system [119, 120].

Conclusions

There are clear clinical differences between types of artificial nutrition depending on the route of administration and the composition of the solution. The full macromolecular solution of EN ensures an adequate mucous immune response, while lack of nutritional stimulus in the lumen rapidly leads to a dysfunction of GALT and mucosal immune system. This dysfunction renders the patients susceptible to distant organ infections, hospital pneumonia, and multiorgan failure of non-infectious etiology. Therefore, we should administer a complete macromolecular solution of intestinal nutrition orally or through a nasointestinal tube, gastrostomy or jejunostomy, to feed patients, unless there is an absolute contraindication. In patients with indication of TPN administration, addition of BBS or GLN preserves the mucosal immune response and may limit the adverse effects of TPN.

References

Nutrition and Mucosal Barrier Digestion 2013;88:193–208 DOI: 10.1159/000353603

19 Deitch EA: Intestinal permeability is in- •

21 Harris CE, Griffiths RD, Freestone N, Billing- •

33 Deitch EA: Bacterial translocation or lymphatic drainage of toxic products from the gut: what is important in human beings? Surgery 2002;131:241–244.

34 Adams CA Jr, Xu DZ, Lu Q, Deitch EA: Factors larger than 100 kDa in post-hemorrhagic shock mesenteric lymph are toxic for endothelial cells. Surgery 2001;129:351–363.

36 Peng YZ, Yuan ZQ, Xiao GX: Effects of early enteral feeding on the prevention of enterogen- •

37 Lehockey P, Sarr MG: Early enteral feeding in severe acute pancreatitis: can it prevent sec- •

41 Schmidt H, Martindale R: The gastrointesti- •

43 Kang W, Gomez FE, Lan J, Sano Y, Ueno C, Kudsk KA: Parenteral nutrition impairs gut- •

44 Brandyza A: The role of host and then the mechanism of injury. JOP 2008;6:244–246.

45 Wu Y, Kudsk KA, DeWitt RC, Tolley EA, Li J: Route and type of nutrition influence IgA- •

47 Fukutsu K, Moriya T, Murakoshi S, Yasuhara H: Interleukin-7 treatment reverses parenter- nal nutrition-induced impairment of resist- •

Anastasilakis/Ioannidis/Gkimisi/Botsios
Nutrition and Mucosal Barrier

