HIV-1 Induces the First Signal to Activate the NLRP3 Inflammasome in Monocyte-Derived Macrophages

Juan C. Hernandeza Eicke Latzb,c Silvio Urcuqui-Inchimad

aInfettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellin, Colombia; bDepartment of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Mass., USA; cInstitute of Innate Immunity, University Hospitals, University of Bonn, Bonn, Germany; dGrupo Inmunovirologia, Universidad de Antioquia, Medellin, Colombia

Key Words
HIV-1 · NLRP3 inflammasome · IL-1\(\beta\) · Macrophages · Inflammation

Abstract
Background/Aims: Inflammasomes are multimolecular complexes that regulate caspase-1. They act as sensors for endogenous and exogenous signals, and mediate the processing of pro-IL-1\(\beta\) into its secreted, biologically active form. The NLRP3 inflammasome and IL-1\(\beta\) are particularly interesting because they are required for efficient control of viral infections. Indeed, HIV-1 induces expression of NLRP3 and IL-1\(\beta\) in healthy controls, but not in HIV-1-infected patients. Here we evaluate whether HIV-1 can induce activation of the NLRP3 inflammasome. Methods: Human primary monocyte-derived macrophages were infected with HIV-1 in the absence or presence of classical NLRP3 inflammasome activators, and IL-1\(\beta\) release was assessed by ELISA. Results: HIV-1 initiates the priming signal for NLRP3 inflammasome activation through the NF-\(\kappa\)B-associated pathway in human primary monocyte-derived macrophages. Furthermore, priming of NLRP3 activation in response to HIV-1 was independent of the viral envelope, since similar results were observed with HIV-1 and pseudotyped HIV-1 lacking the env gene.

Conclusion: Our findings suggest that HIV-1 infection promotes IL-1\(\beta\) secretion by inducing the first signal for NLRP3 inflammasome activation, a phenomenon that may contribute to AIDS progression.

Introduction
Alterations in the mechanisms responsible for the control of inflammation have been associated with pathological events. The inflammatory process is highly controlled and IL-1\(\beta\) plays a central role in this process. The production of IL-1\(\beta\) requires two signals: (i) transcriptional activation mediated by NF-\(\kappa\)B, which in turn is activated by one of the pattern recognition receptors such as the Toll-like receptors (TLR) \cite{1}, and (ii) proteolytic maturation promoted by cytoplasmic complexes called inflammasomes \cite{2}. To date, four inflammasomes have been identified \cite{3}, three of which contain proteins of the NOD-like receptor family, including NLRP1, NLRP3 and NLRC4. The fourth inflammasome contains AIM2 that belongs to the pyrin domain and HIN200 domain-con-
of culture at 37° and 5% CO₂ in the presence of 10 ng/ml GM-CSF (PeproTech). Monocyte differentiation into MDM was confirmed by flow cytometry on an LSR II flow cytometer (BD Biosciences) and analyzed using FlowJo software (Tree Star, Inc.), using macrophage markers (CD68/CD14) (data not shown). In all the reagents used no endotoxin could be detected, using the Limulus amoebocyte lysate (LAL) assay (data not shown).

Viruses

293T cells were transfected with 100 ng of pNL4-3 or pNL4-
3Δenv in the presence of the pVSV-G envelope vector (vesicular stomatitis virus glycoprotein G), using GeneJuice (EMD4Biosciences, San Diego, Calif., USA). After 48 h, the supernatant was harvested and filtered through 0.22-μm filters. This strategy yielded two types of viruses: HIV-1VSV-G and the pseudotyped HIV-
1ΔenvVSV-G. This means that HIV-1 with or without envelope glycoproteins and both with VSV-G to increase the efficiency of infection, reaching 60% in all the experiments, compared to 2–4% without VSV-G protein, as previously reported [36–38]. Viral titers were quantified by a radioactive reverse transcriptase assay, to determine the amount of infectious particles [39]. Viral stocks were treated with DNase-I to remove residual DNA, as previously described [40].

In vitro HIV-1 Infections and NLRP3 Inflammasome Stimulation

Differentiated MDM were stimulated to evaluate both signals of NLRP3 inflammasome stimulation as previously reported [1]. In brief, priming was initiated with 50 pg/ml LPS or with a pulse of HIV-1VSV-G or HIV-1ΔenvVSV-G (300,000 reverse transcriptase units (RTU)). Triggers of the second signal were added 2 h later: 5 mm ATP, 10 μM nigericin, 50 μg/ml silica, 100 mg/ml alum, 20 μg/ml monosodium urate crystals (MSU), and 1 μM R848 or 100 ng/ml LPS, for 4 h (1 h for ATP and nigericin) [41]. In addition, HIV-1 was also used to stimulate the second signal.

ELISA

IL-1β and IL-6 secretion was quantified using ELISA (BD Biosciences) and expressed as pg/ml. IL-1β detection was performed in the supernatants to quantify only the processed form of the cytokine.

Results

HIV-1 Induces the Production of IL-1β in Response to NLRP3 Inflammasome Agonists

MDMs primed with LPS, HIV-1VSV-G or HIV-
1ΔenvVSV-G and then treated with NLRP3 inflammasome activators secreted high levels of IL-1β (fig. 1). HIV-
1ΔenvVSV-G was used to compare the effects of HIV-1 priming in the absence of the envelope glycoproteins. Interestingly, a similar IL-1β production in response to LPS or HIV-1 and the classical NLRP3 inflammasome activators was detected. No IL-1β production was observed in MDM stimulated only with the priming signal or with inducers of the second signal in the absence of priming.
Furthermore, no differences were detected in the secretion of IL-1β based on the viral type used, HIV-1 VSV-G or HIV-1Δenv VSV-G (fig. 1). Similar results were observed in response to silica, alum or MSU, but in these cases, IL-1β production was greater when LPS was used as priming signal compared to HIV-1 primed cells (fig. 1). Moreover, in the absence of a second signal activator, HIV-1 was unable to induce IL-1β release (fig. 1). These results suggest that HIV-1 can induce at least one of the two signals for NLRP3 inflammasome activation in vitro.

HIV-1 Fails to Induce the Second Signal for NLRP3 Inflammasome Activation

To determine whether HIV-1 stimulates the second signal involved in NLRP3 inflammasome activation, MDMs were primed with LPS (50 pg/ml) or HIV-1VSV-G or HIV-1ΔenvVSV-G for 2 h. The cells were then treated with activators of the second signal for the NLRP3 inflammasome [42], as well as HIV-1VSV-G. Our results show that when HIV-1 was used as priming and second signal, the MDMs were unable to secrete IL-1β, suggesting failure to activate the NLRP3 inflammasome. In contrast, classical inflammasome activators such as ATP and silica, and alternative activators such as LPS (100 ng/ml) and R848, induced higher IL-1β production than HIV-1 (fig. 2a). These results suggest that early phases of HIV-1 infection are unable to induce the second signal for NLRP3 inflammasome activation.

HIV-1 Induces the Activation of NF-κB, as Determined by IL-6 Production

The induction of the first signal for NLRP3 inflammasome activation requires the activation of NF-κB, whose signaling triggers the expression of molecules including NLRP3, pro-IL-1β and IL-6 [1]. Therefore, the ability of HIV-1 to stimulate NF-κB signaling was determined by quantifying IL-6 production by MDM. As shown in figure 2b, the stimulation of MDM with HIV-1 as the first signal (fig. 2b) induced the production of IL-6 to a similar level as LPS. As one would expect, ATP and MSU do not have a notorious effect on IL-6 release, but TLR stimulation induces a higher production of IL-6, even in the absence of the priming signal. These results indicate that HIV-1 can activate the production of IL-6 through NF-κB signaling, which is in agreement with the results presented in figure 2a. Thus, HIV-1 activates the first signal for NLRP3 inflammasome through the NF-κB signaling pathway.

Discussion

The NLRP3 inflammasome is one of the components involved in the inflammatory process and constitutes a new member of the innate immune system receptors involved in virus recognition, although its relationship with HIV-1 is only beginning to be studied. Indeed, Pontillo et al. [30] have described that HIV-1 induces the expression of NLRP3 inflammasome components and IL-1β secretion in dendritic cells from healthy individuals but not from HIV-1-infected patients, suggesting a role of the inflammatory process in disease progression. Furthermore, it has been reported that the plasma of HIV-1-infected patients presents increased IL-1β levels during all the stages of infection ([33] and online suppl. S1). However, the mechanism involved in...
the recognition of HIV-1 by the NLRP3 inflammasome is not well understood. Here we show that HIV-1 induces the first signal required for NLRP3 inflammasome activation, since high levels of IL-1β secretion were detected in the supernatants of MDM stimulated with HIV-1 as priming signal, and the classical agonists of NLRP3 inflammasome as second signal (fig. 1). These results indicate that HIV-1 induces the assembly of the active NLRP3 inflammasome that leads to IL-1β production in the presence of specific NLRP3 inflammasome triggers. Indeed, during early moments of HIV-1-cell interactions, a specific expression of the NLRP3 inflammasome components occurs in dendritic cells [33]. This mechanism could help HIV-1 for acute replication and spread. During the chronic phase, other mechanisms are also implicated in the HIV-1 replication and progression, as immune hyperactivation, microbial translocation, or immunosuppression, among other things. However, when HIV-1 was used as priming and second signal, the MDMs were unable to produce IL-1β (fig. 2a). Together the results suggest that HIV-1 acts as priming signal to activate the NLRP3 inflammasome, but is not sufficient to induce IL-1β production on its own. HIV-1 infection is a multifactorial event that may be modulated by several components in the host, environment and the virus itself.

It has been reported that the NLRP3 inflammasome can be activated in response to both RNA and DNA [4, 43]. Since the HIV-1 genome consists of two RNA molecules that in turn are reverse transcribed into a cDNA molecule, these replication intermediates are real candidates for the activation of the NLRP3 inflammasome. The experiments presented here do not allow us to assess whether viral replication could affect activation of the NLRP3 inflammasome. However, they indicate that exposure to HIV-1 was sufficient to activate NF-κB-mediated intracellular signaling and subsequent IL-6 production, consistent with previous studies showing cellular activation and inflammatory response induced by viral components, such as gp120 and the genomic RNA [44, 45]. Our results also indicate that activation of the NLRP3 inflammasome is independent of the HIV-1 envelope protein, since similar results were observed in MDM stimulated with HIV-1VSV-G or HIV-1ΔenvVSV-G. The NLRP3 inflammasome can be activated by viruses or their products [46], including varicella-zoster virus [47], influenza virus [12, 27], hepatitis C virus [48] and adenovirus type 5 [49, 50]. In addition to viral models, other
infectious agents have been associated with NLRP3 inflammasome activation, including immunopathogenesis mechanisms, such as *Aeromonas* spp. [51] and *Borrelia* spp. [52] that induce the expression of IL-1β and IL-18, altering the development of inflammatory immune response. Several microorganisms could be present during the course of HIV-1 due to an immunosuppression state, as well as PAMPs, associated to microbial products translocation from gut, which is a key feature in HIV-1 pathogenesis. However, some microorganisms can also block the activation of the NLRP3 inflammasome to favor their persistence in the host. For instance, the viral protein Orf63 of Kaposi’s sarcoma-associated herpesvirus acts as a viral homologue of NLRP1, blocking the function of the NLRP1 and NLRP3 inflammasomes, decreasing the inflammatory response, and promoting viral reactivation [53]. In terms of endogenous ligands, the cholesterol crystals could be present in HIV-1-infected patients, taking into account the increased risk of cardiovascular diseases among these patients, due to high cholesterol levels in serum [54–56].

Little is known regarding the relationship between HIV-1 and inflammasomes. There is increased expression of IL-1β in HIV-1-infected individuals [31, 32, 34], but information about the mechanisms that promote IL-1β production is sparse. It has also been reported that susceptibility to HIV-1 infection could be associated with polymorphisms in the 3′UTR of NLRP3 [29]; this is the first report that correlates the NLRP3 inflammasome and HIV-1 in macrophages, although no functional studies have been performed. A better understanding of this pathway will advance the development of new strategies against HIV-1 infection. Our results suggest that HIV-1 is able to act as a first signal inducer for NLRP3 inflammasome activation, which could serve in the development of new therapeutic agents to enhance current antiviral strategies. However, our results also show that HIV-1 could not induce the second signal for NLRP3 inflammasome activation, in contrast to the results observed with classical (ATP/silica) and non-classical (LPS/R848) activators that induce IL-1β production in primed MDMs. Consistent with previous reports [57], this study shows that HIV-1 activates NF-κB intracellular signaling as determined by IL-6 production. They support the hypothesis concerning the role of HIV-1 in the induction of the first signal, since NF-κB is responsible for activating the transcription of the genes encoding NLRP3 inflammasome components, such as pro-IL-1β and NLRP3.

Conclusion

These results extend our understanding of the mechanisms of evasion or even exploitation of the immune response to favor viral persistence and pathogenesis. While the work reported here establishes the early phase of HIV-1 infection, as an important priming signal, additional studies are needed for a comprehensive understanding of the NLRP3 inflammasome in the pathogenesis of HIV-1.

Acknowledgements

We acknowledge the help of Gloria Vásquez, Cherilyn Sirois and Anne-Lise Haenni for critically reviewing the manuscript. The authors also acknowledge the technical assistance of Joana Monteiro and Ann Dauphin of the University of Massachusetts Medical School, Worcester, Mass., USA. Finally, the authors acknowledge the contribution of Mario Stevenson of the Developmental Center for AIDS Research, University of Miami, Miami, Fl., USA, for supplying several reagents. This study was supported by COLCIENCIAS, grant No. 111549326099.

Disclosure Statement

The authors have no conflicts of interest to disclose.

References

38 Aiken C: Pseudotyping human immunodeficiency virus type 1 (HIV-1) by the glycoprotein of vesicular stomatitis virus targets HIV-1 entry to an endocytic pathway and suppresses both the requirement for Nef and the sensitivity to cyclosporin A. J Virol 1997;71: 5871–5877.

