Histological Evaluation to Study the Effects of Dental Amalgam and Composite Restoration on Human Dental Pulp: An in vivo Study

Neelam D. Chandwani¹ Mansing G. Pawar¹ Jagdish V. Tupkari¹
Monal Yuwanati¹

¹Conservative Dentistry and Endodontics and ²Oral Pathology and Microbiology, Government Dental College and Hospital, Mumbai, India

Introduction

Restorative dentistry deals with the treatment of tooth tissue defects, not only to control the disease, but also to principally restore the function as well as esthetics without compromising the biology [1]. Amalgam had always been used mostly in clinical practice, but for many years, a controversy has raged over the biocompatibility of amalgam restorations because of mercury [2]. Irrespective of the developments in the composites, the major controversies that still exist following clinical trials are its questionable functional, biological, and esthetic performance [3]. Therefore, the objective of this study was to investigate the histological response of the pulp following the restoration of teeth with the two most commonly used restorative materials in clinical practice: amalgam and composite resin.

Materials and Methods

One hundred sound premolars (maxillary and mandibular) to be extracted for orthodontic treatment were selected from 30 patients between 14 and 25 years of age who visited the Government Dental College and Hospital, Mumbai, India. Preference was given to patients requiring extraction of at least two premolars, so that one side was restored with composite resin and the other with amalgam in order to evaluate the response to both materials in one...
Effects of Dental Amalgam versus Composite Restoration

The selected teeth were randomly divided into two equal groups and restored with class II amalgam (group A) and composite resin (group B). The teeth were further subdivided equally into two subgroups, i.e. 24 h (A-1 and B-1) and 7 days (A-2 and B-2) after extraction. All clinical procedures were done by one dentist (N.D.C.) under rubber dam isolation. The cavity cutting procedure was standardized and was used for both groups.

After anaesthetizing the tooth locally, a conventional class II cavity was prepared as described previously [4]. Each cavity was prepared with a new diamond point (SF 41 ISO 109/010 and SI 46 ISO 010/012, Mani, Japan) using air rotor (NSK, Nakanishi, Japan) as the coolant [5] and high speed [6] to reduce the aggravation of inflammatory response in the pulp. As an increase in the depth of the cavity aggravates the pulp response [7], the occlusal depth was maintained at a minimum level of 1.5 mm from the central groove. To achieve this depth, a straight fissure diamond point was coated with self-curing acrylic at a distance of 1.5 mm from the tip, so that only the required length of the point was available for cutting. Each cavity was cleaned with distilled water to prevent the action of any chemicals on the pulp and was dried with sterile cotton because air blasts increase the inflammatory response [8]. The matrix band and retainer were properly adapted to the tooth using plastic wedges of uniform sizes. For this study, the following materials were used: Dispersalloy (Dentsply), which is high in copper, alumino borosilicate glasses (average particle size 0.8 μm). Cavity varnish was applied to the walls of each cavity in groups A-1 and B-1 [9]. Manipulations of amalgam were done using an automatic amalgamator (Mixalloy, Rohas) for each mix (0.06 g of this alloy triturated with 0.06 g of mercury for 10 s), condensed incrementally by hand followed by carving and finishing of the restoration. As all procedures were done by the same operator (N.D.C.), the condensation pressure was considered to be the same in all cavities and therefore also the pulp response. All amalgam restorations were intentionally left unpolished to prevent inadvertent changes in the response due to polishing [11], and as much finishing as possible was done during carving of the restoration.

For restoration of teeth with composite resin (group B), all cavities were etched using 36% phosphoric acid (DeTrey Conditioner 36, Dentsply) for 15 s to improve marginal integrity because pulp reactions to acid etchants have generally been rated as mild to moderate [12, 13]. Following thorough rinsing and drying of the cavity, a bonding agent (Prime and Bond NT, Dentsply) filled 82% by weight (65% by volume) with a blend of fused silica and barium fluor alumino borosilicate glasses (average particle size 0.8 μm). Cavity varnish was applied to the walls of each cavity in groups A-1 and A-2 [10]. Manipulations of amalgam were done using an automatic amalgamator (Mixalloy, Rohas) for each mix (0.06 g of this alloy triturated with 0.06 g of mercury for 10 s), condensed incrementally by hand followed by carving and finishing of the restoration. As all procedures were done by the same operator (N.D.C.), the condensation pressure was considered to be the same in all cavities and therefore also the pulp response. All amalgam restorations were intentionally left unpolished to prevent inadvertent changes in the response due to polishing [11], and as much finishing as possible was done during carving of the restoration.

For restoration of teeth with composite resin (group B), all cavities were etched using 36% phosphoric acid (DeTrey Conditioner 36, Dentsply) for 15 s to improve marginal integrity because pulp reactions to acid etchants have generally been rated as mild to moderate [12, 13]. Following thorough rinsing and drying of the cavity, a bonding agent (Prime and Bond NT, Dentsply) filled 82% by weight (65% by volume) with a blend of fused silica and barium fluor alumino borosilicate glasses (average particle size 0.8 μm). Cavity varnish was applied to the walls of each cavity in groups A-1 and A-2 [10]. Manipulations of amalgam were done using an automatic amalgamator (Mixalloy, Rohas) for each mix (0.06 g of this alloy triturated with 0.06 g of mercury for 10 s), condensed incrementally by hand followed by carving and finishing of the restoration. As all procedures were done by the same operator (N.D.C.), the condensation pressure was considered to be the same in all cavities and therefore also the pulp response. All amalgam restorations were intentionally left unpolished to prevent inadvertent changes in the response due to polishing [11], and as much finishing as possible was done during carving of the restoration.

The 24-hour postoperative histological evaluation of the 25 teeth restored with amalgam (group A-1) showed mild pulp response in 8 (32%), moderate pulp response in 12 (48%) (fig. 1), and severe inflammatory pulp response in 5 (20%) teeth. The corresponding inflammatory response of the 25 teeth restored with composite (group B-1) was as follows: mild pulp response in 7 (28%), moderate pulp response in 13 (52%), and severe pulp response in 5 (20%). The difference in pulp response to both materials at 24 h and 7 days were compared.

Results

The 24-hour postoperative histological evaluation of the 25 teeth restored with amalgam (group A-1) showed mild pulp response in 8 (32%), moderate pulp response in 12 (48%) (fig. 1), and severe inflammatory pulp response in 5 (20%) teeth. The corresponding inflammatory response of the 25 teeth restored with composite (group B-1) was as follows: mild pulp response in 7 (28%), moderate pulp response in 13 (52%), and severe pulp response in 5 (20%). The difference in pulp response to both materials at 24 h was statistically insignificant (p = 1.00).

The 7-day postoperative histological evaluation of the 25 teeth restored with amalgam (group A-2) showed 15 (60%) teeth with mild response and 10 (40%) teeth with
Fig. 2. Photomicrograph of amalgam after 7 days showing foci of calcification and collagen fiber bundles. HE, ×40.

Fig. 3. Dilated blood vessels with intravascular elements along with fibrosis and cavitation suggest severe response to composite after 7 days.

Fig. 4. Photomicrograph of composite after 7 days showing moderate inflammatory cell infiltration along with abscess in the cavity.

Fig. 5. Photomicrograph of composite after 7 days showing disintegrated odontoblastic layer with focal areas of necrosis. HE, ×40.
have also demonstrated that the age between the tooth and restoration and thermal conductivity of amalgam are important factors in the occurrence of pulp inflammation.

The corresponding response of the 25 teeth restored with composite (group B-2) showed mild inflammatory response in 7 (28%), moderate inflammatory response in 12 (48%), and severe inflammatory response in 6 (24%) (fig. 3). Special features were the number of abscesses (fig. 4) and necrosis (fig. 5) in 8 (32%) of the 25 teeth; fibrous bands were not seen in the slides of this group.

Discussion

The results after 24 h indicate that whether the teeth were restored with amalgam or composite, 68–72% of teeth in each group (A-1 and B-1) exhibited similar inflammatory response of the pulp at a moderate to severe degree. Because the procedure for the preparation of the cavity was similar in both groups, etiological factors other than cavity preparation that contributed to the severity of the initial inflammatory response could be: the effect of local anesthesia [17], condensation pressure [18] and thermal conductivity of amalgam [19], micro-leakage between the tooth and restoration [20], and tooth extraction. Therefore, the immediate irritation of the pulp after 24 h could be attributed mostly to cavity preparation and trauma due to manipulation as previously reported [17–20], irrespective of the type of material used.

There was a significant reduction in the severity of inflammatory response of the pulp in amalgam after 7 days (A-2) as compared to composite (B-2). Seven days are considered to be a sufficient time elapsed to avoid the inclusion of transient pulp inflammatory activity resulting from cavity preparation and manipulation trauma. It is also expected that as time passes, the pulp inflammation should subside, and if this does not occur, the changes seen in the later postoperative time intervals can mostly be attributed to the continuous irritation from the material [21].

The evidence of fibrosis in 32% of teeth restored with amalgam (A-2) is a proof that the healing potential of the pulp was increased, which could be attributed to the inertness of amalgam and its better sealing properties [10]. Various other studies [22, 23] have also demonstrated mild inflammatory pulp reactions under cavities restored with amalgam. However, no such evidence of healing was evident in any tooth restored with composite. On the contrary, necrosis and abscesses were evident in almost 32% of teeth of group B-2, which is a sign of aggravation of the inflammatory response. This can be attributed to the marginal leakage which is the result of polymerization shrinkage of composite resin [24], bacterial penetration beneath composite restoration [25, 26], its dimensional instability in the oral environment, curing method [27], restoration technique [28], and to some extent apoptosis [29] and cell death [30] through the seepage of uncured monomer in the pulp, and to their sealing and adhesion characteristics with cavity walls as well. As this is a short-term study, the results need not have been the same if the study was extended for a longer postoperative duration. Although this method represents a practical possibility for the preliminary evaluation of a new filling material, more information is needed to determine the progressive or reparative character of the initial changes.

Conclusion

This study confirmed that amalgam continues to be the mechanically as well as biologically more competent material for restoration of teeth where esthetics may not be of primary concern. Composite could be a promising restorative material to satisfy esthetic needs for a considerable period of time.

References

