Unraveling the Mechanisms Responsible for the Comorbidity between Metabolic Syndrome and Mental Health Disorders

Elizabeth K. Nousena Juliana G. Francoa Elinor L. Sullivana, b

aDivision of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, Oreg. and
bDepartment of Biology, University of Portland, Portland, Oreg. USA

Key Words
Obesity · Metabolic syndrome · Diabetes · Schizophrenia · Bipolar disorder · Depression

Abstract
The increased prevalence and high comorbidity of metabolic syndrome (MetS) and mental health disorders (MHDs) have prompted investigation into the potential contributing mechanisms. There is a bidirectional association between MetS and MHDs including schizophrenia, bipolar disorder, depression, anxiety, attention-deficit/hyperactivity disorder, and autism spectrum disorders. Medication side effects and social repercussions are contributing environmental factors, but there are a number of shared underlying neurological and physiological mechanisms that explain the high comorbidity between these two disorders. Inflammation is a state shared by both disorders, and it contributes to disruptions of neuroregulatory systems (including the serotonergic, dopaminergic, and neuropeptide Y systems) as well as dysregulation of the hypothalamic-pituitary-adrenal axis. MetS in pregnant women also exposes the developing fetal brain to inflammatory factors that predispose the offspring to MetS and psychopathologies. Due to the shared nature of these conditions, treatment should address aspects of both mental health and metabolic disorders. Additionally, interventions that can interrupt the transfer of increased risk of the disorders to the next generation need to be developed.

Introduction
Interest in the common mechanisms between metabolic syndrome (MetS) and mental health disorders (MHDs) is rising due to increasing prevalence and comorbidity of both. MetS is both preventable and deadly. It is currently defined as a set of chronic and associated features that increase risk of cardiovascular disease and type 2 diabetes mellitus, including central obesity, atherogenic dyslipidemia, insulin resistance, and endothelial dysfunction [1, 2]. There are several definitions of childhood MetS, but all contain features of obesity, dyslipidemia, high blood pressure, and impaired glucose metabolism [3]. These childhood features are better correlated with waist circumference than BMI, and the cardiovascular risk factors persist to adulthood unless changes in nutrition and physical activity are made [4]. Metabolic and mental health conditions are both impacted by numerous environmental and genetic factors, but this review will...
focus on the overlapping mechanisms between MetS and MHDs that contribute to the recent increases in prevalence and may explain their comorbidity (fig. 1).

Increased Prevalence and Common Occurrence of Both Metabolic Diseases and MHDs

The prevalence of MetS and its components is widespread and continuing to rise. Overweight and obese people have an increased risk of developing MetS [1]. In 2010, every state in America had a prevalence of obesity above 20% [5], and one third of the nation is obese [6]. Though obesity rates are plateauing in women, they continue to increase in men and adolescents [7, 8]. Type 2 diabetes is the seventh leading cause of death in the United States [9], and if current trends persist, its incidence will increase to 1 in 3 by 2050 [10]. Evidence also indicates that maternal obesity and high-fat diet consumption during the perinatal period predispose offspring to MetS [11].

MHDs are common: approximately 25% of American adults have a MHD [12]. When delineated further, about 7% of adults suffer from a major depressive disorder, about 3% have a generalized anxiety disorder, and approximately 4% have an attention-deficit/hyperactivity disorder (ADHD) [12]. In children, developmental disabilities have increased dramatically (by 17%) in the last decade, driven largely by increases in reports of ADHD and autism spectrum disorders (ASD) [13]. This recent and rapid rise in childhood neurodevelopmental disorders has led to numerous investigations into the environmental risk factors. Interestingly, the rise in the prevalence of childhood developmental disabilities parallels the increase in adult obesity, and several lines of evidence suggest that maternal obesity increases offspring risk for both MetS and MHDs [11, 14, 15].

MetS and Mental Health Comorbidity

Both MetS and obesity are comorbid with MHDs in 45% of cases [16]. Individuals with schizophrenia, bipolar disorder, depression, anxiety, ADHD, and ASD have a higher prevalence of both obesity and MetS compared to the general population [17, 18]. Evidence linking MetS to specific MHDs will be further outlined in the following sections (fig. 1).
Schizophrenia and Bipolar Disorder

MetS is more prevalent in patients with bipolar disorder or schizophrenia than in the general population. Individuals with bipolar disorder have the highest rates of MetS [17, 19] as well as increased risk for obesity [20] and other metabolic complications [21]. This association is controversial as both typical [22] and atypical [22, 23] antipsychotics are reported to contribute to the increased body weight and MetS. These medications are likely not fully responsible for the association because increased weight and adiposity are also seen in drug-naive individuals [24], and patients diagnosed with their first episode of psychosis were also reported to have increased frequencies of hypertension, diabetes and MetS [25].

Depression and Anxiety

Childhood [26, 27] and adult obesity are associated with an increased risk of depression [28–32] and anxiety [28, 29, 31]. Though body weight is a stronger predictor of depression than diabetes [33], evidence shows that diabetes, independent of weight status, is linked with higher rates of depression [33, 34]; some studies report a four-fold risk increase in diabetic patients [35] that increases with symptom severity [34, 36, 37]. Interestingly, a recent study indicates that obesity may only be linked to depression in individuals with a higher socioeconomic status and that depressive symptoms were associated with increased BMI only in Hispanic women [38]. This report and other conflicting reports of the association between affective disorders and obesity indicate that the association is quite complex and is influenced by factors such as socioeconomic status and ethnicity.

Attention-Deficit/Hyperactivity Disorder

Children [39], adolescents [39], and adults [40] with ADHD are more likely to be overweight or obese than the general population. Similarly, ADHD is more common in obese teenagers [27, 41, 42]. Bariatric surgery is prescribed to promote weight loss in morbidly obese individuals, and preoperative evaluations showed rates of ADHD double that of the general population [43].

Autism Spectrum Disorders

Several studies show that obesity is twice as likely in adolescents with ASD [42, 44]. However, others report that the lower nutrient intake often experienced by children with ASD is severe enough to counter their obesity and may eventually result in underweight status [45].

Disordered Eating

Obesity and mental health issues are often comorbid in compulsive eating disorders such as night-time eating syndrome and binge eating. Binge eating disorder [46] and night eating syndrome [47] are widespread in the obese population, and night eating syndrome is associated with obesity [48], anxiety [49], and depression [46, 48–50]. Furthermore, obese individuals with ADHD display abnormal eating habits compared to obese patients without ADHD [51], and this is also observed in children with ADHD [41] and ASD [52].

Sex-Dependent Evidence

Many relationships between MetS and MHDs are sex-dependent. There is a stronger association between obesity and psychopathologies in women [29, 53]; only morbidly obese men display an increased risk of depression [54]. Overweight and obese females have increased prevalence of anxiety [53], major depressive disorder [53, 55–62], and both childhood and adult ADHD [63], while obese men did not show the same trends [53, 56, 58, 61]. The risk for generalized anxiety disorder and major depressive disorder is increased sixfold in obese females [64]. Morbidly obese women seeking bariatric surgery were also more likely to have a history of mood and anxiety disorders [65], and women with type 2 diabetes have higher risk of depression than men [33, 66].

MetS Increases Risk of Psychopathologies

Beyond comorbidity, several studies highlight that MetS increases the likelihood of developing affective disorders [53] (such as depression [67–72] and bipolar disorder [69]) due to similar underlying mechanisms. Obesity is not found to increase risk of depression in the general population, but the subset of obese individuals with high socioeconomic status have a doubled risk of depression [38]. The relationship between diabetes and later depressive symptoms has been reported to be modest [73] or weak [74], but the strength of the relationship may depend on whether the study used self-reported or diagnostic depressive symptoms [75].

Societal discrimination and stigma against obesity may also increase risk of MHDs [57]. Diabetes may contribute to depression through the fear and lifestyle restriction potentially associated with receiving this diagnosis [73, 75], as well as symptoms like hyperglycemia-induced fatigue [75]. Indeed, there are peaks in antidepressant use after a diagnosis of diabetes [76] and when treatment begins [77].
Psychopathologies Increase Risk of MetS

Evidence supports the bidirectionality of this association between MetS and MHDs. Adults with ASD have a higher risk of developing diabetes [78], and male children with ADHD have a higher risk for adult obesity [79]. Depression similarly increases likelihood of developing diabetes [73] and obesity [68]. Men with depressive symptoms had higher likelihood of developing obesity or MetS in the next decade [80], and depression during adolescence predicts a higher BMI later in life [61]. This data is not conclusive, however, as other studies do not see an increased risk of obesity with depression [67].

Explanations for this relationship are often accredited to medication side effects or disease-induced lifestyle modifications. Typical and atypical antipsychotics and antidepressants cause dyslipidemia [17], weight gain [22, 81], and glucose dysregulation [81]. Correspondingly, individuals with schizophrenia and bipolar disorder have higher risk for components of MetS [17]. Selective serotonin reuptake inhibitors (SSRIs) do have short-term benefits for glucose regulation, but tricyclics and noradrenergic antidepressants worsen the metabolic state [82]. Indeed, female patients taking antidepressants have higher risk of developing type 2 diabetes than unmedicated patients [66].

Environmental factors increasing risk of MetS may be specific to populations with high risk of MHDs. Reduced access to healthcare in patients with schizophrenia or bipolar disorder may contribute to the development of MetS [17]. The increased sugar and saturated fat intake seen in women with depression and obesity [83] increases the likelihood of weight gain and MetS. Furthermore, depression and emotional dysregulation commonly accompany a preference for sweet and fatty food [84], higher caloric consumption [85], and sedentary behavior [85]. Therefore, MHDs may contribute to developing and maintaining an obese state and may also increase resistance to treatment.

Changes in Metabolic Status Impact Mental Health

Psychopathologies are observed in over half of individuals seeking bariatric surgery [86], but symptomology ratings improve after successful surgery in adults [62, 87, 88] and adolescents [89]. These improvements continue years afterward and are greater in women [90]. An inpatient weight loss program also reported improvements in depression after successful weight loss [55].

In stark contrast, a systematic review of bariatric surgery found an increased risk for suicide completion in patients compared to the general public [91]. Another systematic review found that obese people have lower rates of suicide completion despite higher reports of suicidal ideation [58, 92] and attempts in obese women [92]. Thus, it may be that many bariatric surgery patients have improvements in depressive symptoms, but those that do not are more likely to act on their intrusive thoughts.

Conversely, there is limited evidence that successful treatment of psychiatric disorders improves metabolic functioning. One study reported that glucose metabolism improves after treatment for depression [81].

Maternal Metabolic Disorders and Offspring Mental Health

Maternal metabolic status impacts the neurophysiology of developing offspring, predictably, a relationship between maternal obesity and offspring psychopathology has been observed. Obese mothers are 67% more likely to have a child with ASD [93]. Several studies also identify maternal diabetes as a risk factor for ASD [94, 95] and developmental delays [93]. Additionally, maternal obesity is associated with affective problems in children [96, 97] and adolescents [97], as well as increased ADHD behaviors [98, 99]. Similarly, children with ADHD are twice as likely to have a mother who is obese [100].

Diet-induced maternal obesity in animals leads to similar metabolic and behavioral impairments in offspring. Perinatal consumption of a high-fat diet leads to mouse offspring with deficits in spatial learning and memory [101] as well as increased aggression and hyperactivity [102]. Rodent [103, 104] and non-human primate [105] offspring from mothers fed a high-fat diet show increases in anxious behavior.

Similarly, mouse offspring of depressed mothers have compromised memory, higher emotionality, and decreased neurogenesis [106]. This data provides compelling evidence that maternal metabolic status, and potentially maternal mental health, impacts the outcome for offspring.

Potential Mechanisms for Comorbidity of MHDs and MetS

Inflammation

High-fat diet consumption and consequent obesity elicit an inflammatory response [107], and key inflamma-
tory cytokines [such as C-reactive protein (CRP), tumor necrosis factor-α (TNF-α), interferon-γ, and interleukin (IL)-6 and -8] are also involved with mood disorders. IL-6, for example, influences both stress and feeding behaviors [108] and inhibits hippocampal neurogenesis [109], which is involved in schizophrenia and depression [110].

Schizophrenia and Bipolar Disorder
A hypothesis of cytokine-stimulated immune response leading to abnormal brain development is generally accepted for schizophrenia [111]. IL-6 and TNF-α levels are markedly increased in patients with schizophrenia [112–114], and TNF-α is considered a trait marker of the disease [114]. Pathways regulating inflammatory response show alterations in 40% of people with schizophrenia [115]. The cytokine release induced by a toll-like receptor agonist was higher in whole blood from patients with schizophrenia and bipolar disorder [113]. Bipolar patients also show an elevation in IL-6 levels [113].

Inflammation plays such an important role in schizophrenia that this disease is often modeled in rodents by dispensing cytokines and other inflammatory agents to neonates; this results in behavioral abnormalities consistent with human schizophrenia symptoms, and these symptoms respond to antipsychotics [116, 117].

Depression
Increased levels of IL-6 correspond with symptoms of major depressive disorder [112, 118]. Male patients with a history of depression [119] or currently in a depressive episode [120] had higher levels of CRP; this association remained after correction for BMI [120].

Studies examining elderly patients report an association between depression and increased levels of TNF-α [121], CRP [121], and IL-6 [122, 123], though the relationship with IL-6 is stronger in men [121]. Risk for depression in elderly individuals is associated with elevated levels of two of the following pro-inflammatory factors: TNF-α, CRP, and IL-6 [121].

Attention-Deficit/Hyperactivity Disorder
Studies have identified inflammation as a contributing factor for increased risk of ADHD [124]. The brains of individuals with ADHD show higher rates of T-cell-induced apoptosis, which is activated by exposure to pro-inflammatory cytokines [125].

Autism Spectrum Disorders
Individuals with ASD present elevated levels of TNF-α [52], IL-1 [52], IL-6 [52, 126], and interferon-γ [127]. Animal studies reveal that overexposure to IL-6 in the brain results in both cellular abnormalities (poor adhesion and migration [126], over-formation of excitatory synapses [126, 128], and abnormal dendritic spines [128]) and behavioral disturbances (learning deficits, low social interaction, and abnormal features of anxiety and habituation [128]) consistent with ASD.

Brain-Derived Neurotrophic Factor
Similar to inflammatory cytokines, growth factors such as brain-derived neurotrophic factor (BDNF) are potential mediators of the comorbidity between MetS and MHDs. BDNF is critical in neuron development, differentiation, synaptogenesis, regulation, and survival in systems critical in regulating cognition and behavior (dopamine and serotonin [129]) and food intake and body weight (pro-opiomelanocortin and agouti-related protein [130, 131] -discussed in the next section). In humans, polymorphisms of BDNF are associated with schizophrenia [132–134], depression [135], anxiety [135, 136], and other mood disorders [136] as well as with obesity [137–140]. Moreover, mice deficient in BDNF display behavioral abnormalities including aggression [141], hyperactivity [141], and obesity [142]. Interestingly, in a mouse model, maternal obesity was associated with decreased hippocampal BDNF and impaired spatial cognitive function in offspring [101].

Perturbations in Pathways That Regulate Behavior and Metabolic Status
Perturbations in common neuroregulatory pathways likely contribute to the comorbidity of MetS and MHDs. Neuropeptide systems involved in regulating mental health and metabolic status, such as the serotonin, dopamine, neuropeptide Y (NPY), corticotropin-releasing hormone (CRH), and endocannabinoid systems [143], are likely candidates.

Serotonin
Serotonin is best known for regulating mood and behavior. A suppression of central serotonin synthesis is consistently reported in humans with anxiety [144], depression [145, 146], ADHD [147], and ASD [148, 149]. Serotonin 1A receptors have been identified to play a role in anxiety [144, 150]. Mood disorders are commonly treated with SSRI s, which increase the levels of available serotonin.

The brain serotonin system has also received substantial attention for regulating energy balance. Reduction of serotonin system activity increases food intake [151–
phagia and obesity and 2C receptor knockout mice display chronic hyper-eating food intake.

cution are dopaminergic projections from the nucleus ac-

cumbens to the hypothalamus.

Dopamine

Recent neuroimaging studies indicate that dopamine

synthesis and release are altered in individuals with

schizophrenia [170], depression [171, 172], social anxiety [173], ADHD [174], and ASD [175, 176]. Polymor-

phisms in the dopamine transporter are associated with

depression [177], social anxiety [178], ADHD [179, 180], and ASD [181]. Also, a polymorphism in dopamine-3

receptors is associated with repetitive behavior in chil-

dren with ASD [182]. Pharmacological treatment of

many MHDs involves modulation of the dopamine sys-

tem: typical antipsychotic drugs work by blocking dopa-

mine-2 receptors, ADHD is treated using psychostimu-

lants that increase dopamine levels [183], and treatment

with a dopamine agonist produces antidepressant effects

treatment-resistant patients with major depressive disor-

der [184].

Neuroimaging studies provide compelling evidence of

the dopamine system’s involvement in eating behavior and obesity [185] particularly via dopaminergic projec-
tions from the ventral tegmental area to the nucleus ac-
cumbens [186]. Additional routes of food intake regula-
dopaminergic projections from the nucleus ac-
cumbens to the hypothalamus [187] and dopaminergic

neurons in the ventral tegmental area that are impacted

by the hormone leptin, which exerts a neurotrophic influ-

ence in the development of hypothalamic circuits regula-

ting food intake [186]. Cues associated with food increase
dopamine levels [185]. Obese subjects exhibit reduced
dopamine-2 receptor availability, which likely increases

eating in these individuals in order to acutely stimulate

underactive reward circuits [188]. This reduction of

dopamine-2 receptors is associated with suppressed metab-

olism in brain areas involved in self-control and with in-

creased metabolism in regions involved in sensory pro-

cessing of palatability [185, 189]. Interestingly, a recent

imaging study of patients recovered from anorexia ner-

vosa indicates that their eating-induced dopamine release

may produce anxiety instead of the typical pleasurable

response [190].

Mice that lack the gene encoding tyrosine hydroxylase, the

enzyme responsible for dopamine synthesis, initially

gain weight and feed normally, but, unless dopamine is

supplemented, they will stop feeding and die from starva-
tion [191]. Dysfunctional processing of reward-based

feeding through the dopaminergic system is a potential

contributor to the obesity epidemic and likely contributes to

the comorbidity of MetS and MHDs.

Hypothalamic Neurotransmitters

Neurons producing NPY/agouti-related protein and

α-melanocyte-stimulating hormone in the arcuate nucle-

us are key regulators of body weight and food intake

[192]. NPY is also implicated in behavioral regulation,

and NPY expression is reduced in schizophrenia [193, 194], bipolar disorder [193–195], and depression [193, 196] and is elevated in children with ADHD [197]. Ap-

lication of a NPY 1 receptor antagonist in rats produces

increased anxiety and decreased social interaction [198],

and mice given central administration of NPY [199, 200] or

lacking NPY 2 receptors display decreased anxiety.

Dysregulation of the Hypothalamic-Pituitary-Adrenal

Axis

The influence of the hypothalamic-pituitary-adrenal (HPA) axis in MetS is well recognized. Obese humans

with insulin resistance exhibit elevated cortisol [201]. Furthermore, hyperactivation of the HPA axis may

increase adiposity by promoting hyperphagia and con-

sumption of palatable foods [84]. Consumption of these

‘comfort foods’ inhibits the HPA axis; thus, overeating

may be a compensatory response to temporarily reduce

chronic stress [202]. Animal studies demonstrate an acute

reduction in anxiety and depressive-like behavior after

consumption of palatable food [203]. Cortisol exposure

may also impact the reward value of a food item by influ-

encing factors such as leptin, insulin, and NPY [202].

It is also well documented that MHDs are associated with
dysregulation of the HPA axis. CRH-expressing

paraventricular neurons [204] and cerebrospinal fluid

CRH levels are increased in individuals with depression

[205, 206]. Postmortem analysis of suicide victims reveals

a reduction in CRH receptor density [207], which occurs

via negative feedback to compensate for CRH overex-

posure. There is also evidence that depressed individuals

have chronically elevated cortisol that is responsible for

increasing MetS symptoms [61, 85].
Mice that overexpress CRH display symptoms of MHDs and MetS including hyperphagia, insulin resistance, increased anxiety, and impaired coping to stress [208–210]. Pharmacological agents used to treat both MetS and MHDs modulate HPA axis activity [211].

Reduction of the Heart Rate Variability

Heart rate variability (HRV) is a non-invasive measurement of cardiac autonomic function that has been considered a valid tool for diagnosis and management of cardiovascular disease [212]. As a number of studies suggest that MetS negatively affects autonomic cardiac control [213, 214], autonomic dysfunction could contribute to an increased risk of subsequent cardiovascular events in individuals with MetS. In general, MetS patients have reduced HRV, suggesting decreased parasympathetic and/or increased sympathetic modulation of the heart [212, 214–217].

This autonomic dysregulation has also been suggested as a possible contributor to the increased cardiovascular risk in patients with psychiatric disorders [218, 219]. Decreased HRV values were found in subjects with depression [220, 221] or schizophrenia [222]. Decreased vagal stimulation was also found in children with ADHD [223]. However, it remains unclear whether mood disorders or medications are driving the autonomic dysregulation found in patients with MHDs. Tricyclic medications and SSRIs were also associated with reduced HRV [224, 225] while non-pharmacological therapies such as physical exercise, meditation, smoking cessation, and dietary changes are associated with increased HRV [224].

HRV is not the only measurement that highlights the link between components of MetS and MHDs; non-invasive brain stimulation strategies can improve depressive symptoms in patients with depression or bipolar disorder [226] and may be effective in reducing HPA activity [227].

Maternal Metabolic Health Programs Offspring

The mechanisms previously discussed are compounded by the effect of maternal metabolic status. The placenta transfers maternal inflammation to the developing fetal brain, so maternal MetS has additional consequences for offspring metabolic and mental health. In fact, in animal models, perinatal exposure to maternal obesity and a high-fat diet has been demonstrated to alter the serotonergic [105] and dopaminergic [228] systems of offspring.

Placental Dysfunction

The placenta is highly sensitive to maternal metabolic status; gestational diabetes [149, 229, 230] and obesity are associated with an inflammatory response in this organ [149, 229–231]. Large animal studies report negative effects of obesity and over-nourishment on the placenta: decreased mass [232], reduced capillary density [232], and reduced uterine blood flow [232, 233].

Poor placental functioning is compounded by the transmission of inflammatory factors. Pregnant women who are obese have system-wide inflammation [229], and increased circulating cytokines further impair placental function [234, 235].

Gestational Exposure to Inflammation

Fetal brain development and neurotransmitter systems essential for behavioral regulation are sensitive to elevated circulating cytokines [236]. Pro-inflammatory factors initiate extensive neuronal plasticity and growth in the fetal brain and contribute to a state of chronic fetal inflammation [237]. Many symptoms of ASD are proposed to result from this early exposure to elevated inflammatory cytokines [237].

Inflammatory factors are present in both obesity and MHDs. The structural differences of fetal brains exposed to high levels of IL-8 correspond with brain alterations seen in patients with schizophrenia [238]. Additionally, IL-6 has a critical influence on ASD risk in offspring [239]. IL-4 and IL-5 are elevated in mothers of children with ASD [240]. Over-nutrition results in increased levels of inflammatory factors that are also elevated in children with ASD [241, 242].

Alternate Mechanisms of Maternal Programming

Offspring exposed to maternal obesity and high-fat diet consumption are exposed to excess levels of nutrients and hormones that are postulated to impact fetal brain development [11]. Maternal glucose passes through the placenta [243], and the pancreatic β-cells of the fetus respond by increasing insulin secretion. As insulin is a critical neural growth factor [244], this hyperinsulinemia during development of neural pathways may predispose the offspring of obese mothers to MetS. For example, rodent studies indicate that insulin administration during development produces obesity [245–247] and risk for diabetes [247] in offspring. In addition, offspring of obese mothers are exposed to elevated levels of leptin [244].
Unraveling Mechanisms Responsible for Comorbidity between MetS and MHDs

DOI: 10.1159/000355632

Neuroendocrinology 2013;98:254–266

Conclusion

Recent scientific research has identified a bidirectional association between components of MetS and MHDs, and common underlying mechanisms are credited (fig. 1). Lifestyle factors and neurological alterations increase vulnerability to both MetS and MHDs, and the overlapping neurological mechanisms that are implicated in both conditions include changes to neuroregulatory brain pathways, dysregulation of the HPA axis, and a chronic state of inflammation. Additionally, placental dysfunction allows mothers with MetS to transfer the inflammatory state and consequent brain alterations to their developing fetuses.

Psychopathologies have a high comorbidity with obesity and MetS, especially in women, and thus treatment for high body weight should include a therapeutic aspect that is specific to the presented mental and metabolic disturbances in the patient. Beyond this wholistic approach, it is imperative to develop intervention strategies to prevent transferring these syndromes to the next generation.

Acknowledgements

This publication was supported by the Murdock Charitable Trust, Murdock College Research Program for Life Science, grant No. 2011273:HVP and Oregon Clinical and Translational Research Institute (OCTRI), grant No. (UL1TR000128) from the National Center for Advancing Translational Sciences (NCATS) at the National Institutes of Health (NIH). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

References

15. Sullivan EL, Nounes EK, Chamlou KA: Maternal high-fat diet consumption during the perinatal period programs offspring behavior. Physiol Behav 2012;piii.
Unraveling Mechanisms Responsible for Comorbidity between MetS and MHDs

DOI: 10.1159/000355632

Kennett GA, Curzon G: Evidence that hypophagia induced by mCPP and TFMPP requires 5-HT1C and 5-HT1B receptors, hypophagia induced by RU-24969 only requires 5-HT1B receptors. Psychopharmacology (Berl) 1988;96:93–100.

Unraveling Mechanisms Responsible for Comorbidity between MetS and MHDs

193 Morales-Medina JC, Dumont Y, Quirion R: A possible role of neuropeptide Y in depression and stress. Brain Res 2010;1314:194–205.1

197 Zhou QY, Palmer BD: Dopamine-deficient mice are severely hypoactive, adipic, and aphagic. Cell 1995;83:1197–1209.

