Epinephrine Evokes Renalase Secretion via α-Adrenoceptor/NF-κB Pathways in Renal Proximal Tubular Epithelial Cells

Feng Wang a Hongyan Cai b Qing Zhao c Tao Xing d Junhui Li a Niansong Wang a

aDepartment of Nephrology and Rheumatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233; bDepartment of Microbiology and Immunology, Shanxi Medical University, Taiyuan 030001; cDepartment of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; dFlorey Institute of Neuroscience and Mental Health, University of Melbourne, VIC 3010, Australia

Key Words
Renalase • Epinephrine • Renal proximal tubular epithelial cell

Abstract
Background/Aims: Renalase is a recently discovered, kidney-specific monooamine oxidase that metabolizes circulating catecholamines. These findings present new insights into hypertension and chronic kidney diseases. Previous data demonstrated that renalase was mainly secreted from proximal tubules which could be evoked by catecholamines. The purpose of this study is to investigate whether renalase expression is induced by epinephrine via α-adrenoceptor/NFκB pathways. Methods: HK2 cells were utilized to explore renalase expression in response to epinephrine in vitro. Phentolamine, an α-adrenoceptor antagonist, and Tosyl Phenylalanyl Chloromethyl Ketone (TPCK) were used to block α-adrenoceptor and to knock down the transcription factor NFκB, respectively. Renalase expression was analyzed using Western blot and quantitative PCR. Results: Both protein and mRNA levels of renalase in HK2 cells increased in response to epinephrine (P<0.05). Epinephrine-evoked renalase expression was attenuated by phentolamine and TPCK separately (P<0.05). Conclusion: Epinephrine evokes renalase secretion via α-adrenoceptor/NF-κB pathways in renal proximal tubular epithelial cells.

Drs. Hongyan Cai, Qing Zhao and Feng Wang contributed equally to this work.
Introduction

The kidney plays a vital role in the regulation of arterial blood pressure, but there are still many questions about how the kidney works in the development of hypertension and cardiorenal syndrome. Renalase, a newly discovered monoamine oxidase from the kidney, can metabolize circulatory catecholamines, which suggests novel mechanisms of cardiovascular complications in patients with chronic kidney diseases (CKD) [1]. Renalase is strongly expressed in the kidney and heart, and the kidney is the major source of blood renalase [2, 3]. Renalase decreases arterial blood pressure through oxidizing catecholamines (epinephrine>dopamine=norepinephrine), which is a new mechanism by which the kidney can regulate blood pressure [4]. Consistent with this new mechanism, CKD animal models demonstrate decreased renalase levels and increased catecholamine levels which are associated with elevated blood pressure [5]. Furthermore, a renalase knockout mouse presents moderate hypertension and a ~3 fold increase in plasma catecholamines [6]. Among the renal tissues, renalase expression is highest in the proximal tubules [1]. According to our previous results, renalase was not secreted by podocytes or mesangial cells but by proximal tubular epithelial cells in vitro [7].

Studies in the isolated perfused kidney model suggest that catecholamines stimulate renalase expression and secretion [8]. But how catecholamines enhance renalase secretion and which pathways participate in renalase expression is unknown. We hypothesize that epinephrine evokes renalase secretion via α-adrenoceptor/NF-κB pathways in renal proximal tubular epithelial cells. This study on epinephrine-induced renalase expression in vitro was conducted to investigate the related pathways.

Materials and Methods

Cell culture

Human renal proximal tubular epithelial cells (HK2 cell line, ATCC) were cultured in Keratinocyte Serum Free Medium (K-SFM) (#17005-042, GIBCO) and subcultured at 80% confluence. To induce renalase expression, HK2 cells were incubated with epinephrine (E4642, Sigma-Aldrich) (10^-8, 10^-7, 10^-6 g/L) in 24-well plates. Supernatants were used for Western blot analysis to determine secreted renalase levels. HK2 cells were collected to conduct total RNA extraction and quantitative real-time PCR was employed to determine the mRNA levels.

α-adrenoceptor blocked with phentolamine in HK2 cells

In order to investigate whether epinephrine could induce renalase in HK2 cells through α-adrenoceptor, HK2 cells were preconditioned for 30 min with phentolamine (P7547, Sigma-Aldrich) (1.0μmol/L) before incubating with epinephrine (10^-7 g/L). After treatment with epinephrine for 6 hr, HK2 cells were collected to extract total RNA. The changes of renalase mRNA were measured by quantitative PCR. After treatment with epinephrine for 24 hr, the supernatants of HK2 cells were prepared for Western blot analysis.

NFκB inhibited with Tosyl Phenylalanyl Chloromethyl Ketone

To investigate whether transcription factor NFκB is involved in renalase expression, tosyl phenylalanyl chloromethyl ketone (TPCK) (T4376, Sigma-Aldrich) was used to inhibit NFκB activation. After preconditioning with TPCK for 30 min, HK2 cells were stimulated with epinephrine (10^-7 g/L) for 15 min and 6 hr, respectively. After 15 min the cells were harvested to determine the levels of Phospho-IκBα via Western blot. After 6 hr the cells were harvested and total RNA was extracted for quantitative PCR to determine the mRNA levels of renalase.

Western blot analysis

Western blots were carried out according to what was described previously [7, 9, 10]. The protein sample concentrations were measured using the ABC kit. The primary antibodies were goat anti-renalase...
polyclonal antibody (ab31291, Abcam) (1:500 dilution) and Phospho-IκBα (Ser32) (14D4) Rabbit mAb (#2859, Cell Signaling) (1:500 dilution). All the data were obtained from ChemiDoc XRS+ System (BioRad) and band intensity was analyzed using Imag Lab 4.0.1 software.

Quantitative real-time PCR

Total RNA from HK2 cells was isolated using Trizol (Invitrogen). 18s rRNAs were used as internal normalizer control for mRNA. Levels of renalase mRNA in total RNA were quantified with one-step real-time PCR. Comparative Ct strategy was employed to process PCR results. The primers of renalase were 5’-GAAAATCATTGCAGCCTCTCA-3’ (foward) and 5’-AAGTTCTGCTGCTGTGCTGTA-3’ (reverse).

Statistics

Data were analyzed with SPSS 18.0 using a One-way ANOVA followed by Least Significant Difference (LSD) test. P values below 0.05 were considered significant.

Results

Epinephrine induced renalase expression

Compared to controls, the renalase protein levels increased significantly at 24 hr in the supernatant of HK2 cells incubated with three different concentrations of epinephrine (10^{-8}, 10^{-7}, 10^{-6}g/L) (P<0.05, respectively). Moreover, renalase secretion presented a positive association with epinephrine concentration, as shown in Fig.1A. Renalase mRNA levels were elevated at 6 hr and 12 hr with the stimulation of epinephrine (P<0.05 respectively). After 24 hr treatment with epinephrine, the renalase mRNA of HK2 cells was maintained at higher levels compared to control, but exhibited a downward trend, as shown in Fig.1B and 1C. The time course showed that renalase secretion increased quickly after 6 hr treatment with epinephrine (Fig.1E).

Epinephrine-evoked renalase expression was inhibited by α-adrenoceptor blocker

Renalase protein levels in the supernatant of HK2 cells treated with epinephrine (10^{-7}g/L) were attenuated by phentolamine (1.0μmol/L) at 24 hr as shown in Fig.2A. It can be observed that epinephrine (10^{-7}g/L) raised renalase mRNA levels at 6h compared with the control (P<0.01). However, pretreatment with phentolamine (1.0μmol/L) suppressed epinephrine-stimulated renalase expression in HK2 cells (P<0.05), as represented in Fig.2B. These results suggest stimulation of α-adrenoceptor may be involved in the epinephrine-evoked renalase expression.

Epinephrine-evoked renalase expression is mediated by NFκB

It was found that Phospho-IκBα increased significantly in HK2 cells treated with epinephrine (10^{-7}g/L) at 15 min and was inhibited by TPCK (45μmol/L) (Fig.3A). The elevations of renalase mRNA resulting from epinephrine stimulation were suppressed by TPCK (45μmol/L) (Fig.3B) (P<0.05). Thus, epinephrine-evoked renalase expression might be mediated by NFκB pathways.

Discussion

Renalase is a recently discovered monoamine oxidase from the kidney that degrades catecholamines [1, 11, 12]. Renal proximal tubular epithelial cells are able to secrete renalase, but podocytes or mesangial cells are not [7]. Epinephrine infusion increased renalase levels, but the pathways mediating the expression of renalase are still unclear [13]. The present study demonstrated that renalase expression could be induced by epinephrine in renal proximal tubular epithelial cells. It was found that renalase gene expression was much higher at 6 hr after incubation with epinephrine than that in control
assessed by quantitative PCR. The elevation of renalase mRNA was maintained until 24 hr after treated with epinephrine. The increased secretory renalase protein was detected by Western blot after epinephrine stimulation (Fig. 1). The results were consistent with previous reports about renalase expression in vivo [8, 13]. The results did not tell how much of the detected renalase protein was from the stored renalase inside the cells or newly synthesized. It is necessary to investigate the time-course of renalase expression in more detail in the future.

Also, this study showed that renalase expression evoked by epinephrine was blocked by phentolamine, an α-adrenoceptor antagonist (Fig. 2). As an organ innervated by sympathetic nerves, the kidney has abundant α-adrenoceptors on the proximal tubular epithelial cells that are related to metabolism of water and salt. The renal sympathetic nerve has a crucial role in
regulating arterial blood pressure and renal denervation is becoming an effective treatment for refractory hypertension [14-16]. It could be speculated that α-adrenoceptors may play a key role in epinephrine-induced renalase expression. Whether α1 or α2 adrenoceptors are involved in the renalase expression needs further investigation. Very recently Wang S. et al. reported that renalase expression was regulated by D5 dopamine receptors in rat renal proximal tubular cells treated with dopamine [17]. This demonstrated that renalase regulation is quite complex. More investigations regarding the regulation of renalase is needed.
In addition, phospho-IκBα increased significantly in HK2 cells treated with epinephrine, which confirmed that NFκB was activated by epinephrine. These results manifested that epinephrine-induced renalase expression was blunted when NFκB was inhibited with TPCK. It was indicated that the transcription factor NFκB plays a pivotal role in regulating renalase expression in proximal tubular epithelial cells.

Accumulating evidence indicates that both α and β adrenergic receptors (AR) play an active role in the NF-kB pathway. It is reported that α1-ARs stimulated IL-6 expression and secretion through p38 MAPK and NF-kappaB pathways [18]. Tan KS. et al demonstrated that β2 AR activation stimulated pro-inflammatory cytokine production in macrophages via PKA- and NF-kB-independent mechanisms [19]. β-AR agonists may also increase the production of IκBα, thereby inhibiting NF-κB activation [20]. In addition, a2B-AR could promote MAPK activation in a clone of the renal tubular cell line [21]. In brief, AR pathways and their biological functions are complicated. Which subtype of AR involved in renalase secretion should be further investigated.

It was concluded that epinephrine stimulated renalase expression in proximal tubular epithelial cells may be via α-adrenoceptor/NFκB pathways. This finding has not been reported before and will pave the way to explore the mechanisms mediating renalase secretion in more detail.

Furthermore, a previous study by Jiang W. et al. demonstrated that renal denervation increased renalase levels in plasma and kidney [22]. This study exhibited phentolamine may inhibit renalase expression, which might lead to increase blood pressure. This seems contradictory. Usually the modulations of biological molecules are much more intricate in vivo than in vitro. Indeed, the regulation of blood pressure is a complicated field. Another limitation to this study is that the activity of renalase was not determined.

Conclusion

The discovery of renalase is a great progression that may reveal novel mechanisms and explanations to hypertension and high risk of cardiovascular complications in patients with CKD [23-27]. Studies surrounding renalase provide new evidences for the crucial role of the kidney in blood pressure regulation. More in-depth research is finding that renalase is involved in not only hypertension but also in heart failure, stroke, diabetes, and insulin resistance [28-31]. Renalase may be a valuable and effective drug for hypertension and CKD [32]. It is important to better understand the pathways affecting renalase expression. Upregulation of renalase might be another novel therapeutic method in the future.

Disclosure Statement

The authors of this manuscript state that they do not have any conflict of interests and nothing to disclose.

Acknowledgements

This work was sponsored by the National Natural Science Foundation of China (81100528 and 81270824), the New-100 talent Plan of Shanghai Jiao Tong University School of Medicine, and Shanghai talents development fund.
References

Wang/Cai/Zhao/Xing/Li/Wang: Epinephrine Evokes Renalase via α-Adrenoceptor/NF-κB Pathways

