Neuroanatomy of the Human Hypothalamic Kisspeptin System

Erik Hrabovszky
Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary

Key Words
Gonadotropin-releasing hormone · Hypothalamus · Immunohistochemistry · Kisspeptin · Luteinizing hormone-releasing hormone · Neurokinin B · Reproduction

Abstract
Hypothalamic kisspeptin (KP) neurons are key players in the neuronal network that regulates the onset of puberty and the pulsatile secretion of gonadotropin-releasing hormone (GnRH). In various mammalian species, the majority of KP-synthesizing neurons are concentrated in two distinct cell populations in the preoptic region and the arcuate nucleus (ARC). While studies of female rodents have provided evidence that preoptic KP neurons play a critical sex-specific role in positive estrogen feedback, KP neurons of the ARC have been implicated in negative sex steroid feedback and they have also been hypothesized to contribute to the pulse generator network which regulates episodic GnRH secretion in both females and males. Except for relatively few morphological studies available in monkeys and humans, our neuroanatomical knowledge of the hypothalamic KP systems is predominantly based on observations of laboratory species which are phylogenetically distant from the human. This review article discusses the currently available literature on the topographic distribution, network connectivity, neurochemistry, sexual dimorphism, and aging-dependent morphological plasticity of the human hypothalamic KP neuronal system.

Introduction
Members of the kisspeptin (KP) neuropeptide family encoded by the KISS1 gene are potent stimulators of luteinizing hormone (LH) secretion in various mammalian species, including rodents [1], sheep [2], monkeys [3], and humans [4]. The hypothalamic KP neuronal system is critically involved in the central regulation of puberty and reproduction. KP acts mainly by stimulating gonadotropin-releasing hormone (GnRH) secretion from the hypothalamus. Accordingly, the KP-induced release of LH can be prevented by GnRH antagonists in mice [1] and monkeys [5]. The actions of KP on GnRH neurons are mostly direct. GnRH neurons receive KP-immunoreactive (IR) afferent inputs [6–10], express the KP receptor (Kiss1r) transcripts [2, 11, 12], and respond with cFos expression [11, 13] and depolarization [12, 14, 15] to KP.

Inactivating mutations of the KISS1 gene [16] or the KISSIR gene [17, 18] produce hypogonadotropic hypogonadism in humans, and similar reproductive deficits...
also characterize Kiss1 [19, 20] or Kiss1r [18, 21] knock-out mice. While similar fertility problems observed in mutants of the two species suggest that the reproductive significance of KP/KISS1R signaling is conserved in different mammals, potentially significant species differences have remained mostly unexplored in the absence of sufficient neuroanatomical information from the human. About 150 KP review articles have been published over the last 8 years to address various aspects of KP/KISS1R signaling. The aim of the present article is to provide an overview of the currently available anatomical literature on the human hypothalamic KP system. The topographic distribution, network connectivity, neurochemistry, sexual dimorphism, and aging-dependent morphological plasticity of human hypothalamic KP neurons are discussed in light of anatomical and functional information mostly available from animal experiments.

Major Groups of Human Hypothalamic KP Neurons

KP-synthesizing neurons in various mammalian species have been localized to two major anatomical sites: the preoptic area and the arcuate nucleus (ARC) [22]. Both cell populations have also been identified in the human hypothalamus [10]. The distribution of human hypothalamic KP neurons is illustrated schematically in figure 1.

KP Neurons in the Rostral Periventricular Area of the Third Ventricle

In several species, a major KP cell population has been identified in the preoptic region [22]. In laboratory rodents, the somata of these neurons form a compact cell mass in the anteroventral periventricular nucleus (AVPV) and the preoptic periventricular nucleus [1, 7, 23], defined together as the rostral periventricular area of the third ventricle (RP3V) [24]. Importantly, this KP cell group comprises many more neurons in females than in males; this conspicuous sexual dimorphism (see also Sexual Dimorphism of Human KP and NKB Neurons) develops in response to the organizational effects of neonatal testosterone exposure in males [7, 25, 26]. A KP-synthesizing cell population is also present in the preoptic region of the sheep, although preoptic KP neurons in this species appear to be more scattered and less numerous [27, 28] than in rodents. The KP cell group of the ovine preoptic area also exhibits higher cells numbers in females compared to males; this sexual dimorphism develops prenatally in response to testosterone exposure of the male [29]. Some neurochemical properties of preoptic (RP3V) KP neurons have already been investigated and revealed in rodents. In situ hybridization and immunohistochemical studies identified galanin mRNA and immunoreactivity, respectively, in varying subsets of RP3V KP neurons in mice [30, 31]. In addition, in subpopulations of the RP3V, but not of the ARC, KP neurons exhibited immunoreactivities to met-enkephalin [31] and to the dopaminergic marker tyrosine hydroxylase [32]; in this species, KP/tyrosine hydroxylase neurons were proposed to represent the major source of dopamine in the afferent regulation of GnRH neurons [32]. In situ hybridization studies on mice also identified GABA-ergic and glutamatergic marker mRNAs in subsets of the RP3V KP neurons [33], indicating that these cells also use classic amino acid neurotransmitters for synaptic communication.

The first systematic study to localize KP-expressing neurons in postmortem human hypothalami used in situ hybridization with radiolabeled cDNA oligonucleotide probes on sagittal sections [34]. In addition to visualizing the bulk of KP neurons in the hypothalamic infundibular (arcuate) nucleus (Inf), this study only identified rare, sparsely labeled neurons scattered within the hypothalamic sections including the medial preoptic area; notably, these preoptic neurons were not grouped in discrete foci in a distribution reminiscent of the AVPV (or RP3V) of the rodent [34]. Similarly, immunohistochemical mapping of KP neurons in neonatally gonadectomized male monkeys only identified KP-IR neurons in the posterior two thirds of the ARC but not in the preoptic area [8]. In contrast with the results of the above two studies, in situ hybridization analysis of KISS1 mRNA in cycling female monkeys detected quite significant numbers of KP neurons in the preoptic area [35]. The preoptic KP neurons of the monkey formed a compact cell group and exhibited the highest levels of expression in the late follicular phase [35], suggesting the positive estrogenic regulation of their KISS1 mRNA expression which also characterizes KP neurons in the rodent RP3V [23, 25, 26]. The different results of this [35] and the previous two [8, 34] studies may have technical explanations. The choice of sagittal human tissue sections [34] and the use of a neonatally gonadectomized male monkey model [8] could be suboptimal for visualizing preoptic KP neurons. To map the human hypothalamic KP system in our laboratory, we performed immunohistochemical studies on free-floating sections that were prepared from immersion-fixed postmortem human hypothalamic tissue blocks [10]. Two different KP antisera were used in these studies. The first one (#566; a gift from Dr. A. Caraty, Nouzilly, France) was directed against the peptide YNWNSFGLRY-NH2,
which is common to all forms of mouse KP [27] and is 90% identical to the corresponding human sequence (YNWNSFGLRF). Although the single amino acid substitution at the C-terminal KP sequence of the human results in a relatively low cross-reactivity (1%) of the #566 rabbit antiserum with the human KP-10 peptide in radioimmunoassay [27], this antibody was still suitable for immunohistochemical detection of human KP with the highly sensitive ABC technique and silver-gold-intensified nickel-diaminobenzidine chromogen [10]. A second polyclonal antiserum (GQ2; a gift from Dr. S.R. Bloom; London, UK) we used was raised in sheep specifically against the full-length KP-54 sequence of humans. This antiserum reacts with human KP-54, KP-14, and KP-10 and shows virtually no cross-reactivity (<0.01%) with other related human RF amide peptides, including prolactin-releasing peptide, neuropeptide FF, neuropeptide AF, and RF amide-related peptides (RFRP1, RFRP2, and

Fig. 1. Topographic distribution of KP-IR cell bodies in the human hypothalamus. Schematic diagrams of coronal sections were generated with CorelDRAW from representative Nissl-stained sections of human hemihypothalami. Green dots correspond to the distribution of KP-IR cell bodies at the different rostro-caudal levels (a–f). Anatomical information is combined from male and female individuals of various ages. Most rostrally (a), a prominent group of faintly stained KP neurons occurs in the ventral periventricular hypothalamic nucleus (Vpe) and in the anterior parvocellular subdivision of the paraventricular nucleus (PaAP). Behind this level (b), labeled somata are accumulated in the magnocellular part of the paraventricular hypothalamic nucleus (PaMc). These two cell groups are most numerous in young female individuals and appear to be analogous, at least anatomically, to KP neurons in the RP3V in rodents [24]. KP neurons are most numerous in the caudal Inf (e). This cell group is likely to correspond to KP neurons of the ARC in laboratory animals and extends into the proximal portion of the InfS. KP neurons in this region are most numerous in samples from postmenopausal women [62]. A third population of relatively darkly labeled KP neurons is scattered in the periventricular region through the rostro-caudal extent of the human hypothalamus. 3V = Third cerebral ventricle; Ac = anterior commissure; BST = bed nucleus of the stria terminalis; DHA = dorsal hypothalamic area; DMH = dorsomedial hypothalamic nucleus; Fx = fornix; HDB = horizontal limb of the diagonal band of Broca; LHA = lateral hypothalamic area; LSV = ventrolateral septal nucleus; Ltu = lateral tuberal nucleus; Mfb = medial forebrain bundle; MMC = magnocellular part of the mammillary nucleus; Opt = optic tract; OX = optic chiasm; Pa = paraventricular hypothalamic nucleus; Sch = suprachiasmatic nucleus; SO = supraoptic nucleus; VMH = ventromedial hypothalamic nucleus. Scale bar = 2.5 mm.
RFRP 3) [4]. In immunohistochemical assays, both KP antibodies visualized a group of relatively lightly labeled neurons in the rostral periventricular area, overlapping with the ventral periventricular nucleus, the anterior parvicellular paraventricular nucleus, and the parvicellular and magnocellular subdivisions of the paraventricular nucleus, according to the anatomical atlas of Mai et al. [36] (fig. 1a, b). This relatively compact cell group showed sexual dimorphism and was most obvious in tissue samples obtained from young women [10]. Information regarding the presence of tyrosine hydroxylase, enkephalins, galanin, or amino acid neurotransmitters in the rostral periventricular KP neurons of the human is currently unavailable. Moreover, an AVPV/RP3V-like anatomical entity and other sexually dimorphic systems at a similar location of the primate hypothalamus have not been reported yet.

From a functional point of view, there is a strong case that, in rodents, the KP cell population of the RP3V is critically involved in positive estrogen feedback to GnRH neurons [24]. The higher number of KP neurons in the female versus male rodent RP3V [7, 25, 26] correlates with the ability of female, but not male, rodents to respond to the positive feedback action of estradiol with a GnRH/LH surge (see also Sexual Dimorphism of Human KP and NKB Neurons). Preoptic KP neurons are activated before the preovulatory GnRH/LH surge not only in rodents [26, 37–39] but also in sheep [40, 41].

The presence of a sexually dimorphic KP cell population in the rostral periventricular area of human [10] and monkey [35] hypothalami raises a challenge for the prevailing view that the positive estrogen feedback in primates takes place exclusively in the infundibular region [42]. Spontaneous menstrual cyclicity and LH/follicle-stimulating hormone (FSH) responses to estrogen in nonhuman primates remain well preserved after medio-basal hypothalamic deafferentation [43, 44], and estradiol can elicit gonadotropin surges after acute complete removal of the neural tissue dorsal and anterior to the optic chiasm [45]. Although the above data seem to suggest that the preoptic/anterior hypothalamic region is not essential for the GnRH/LH surge, multiple feedback centers and some redundancy in the mechanism of the preovulatory GnRH/LH surge remain possible, with important modulatory roles of an anterior preoptic KP cell population. Notably, Cogen et al. [46] reported that monkeys with bilateral anterior hypothalamic disconnection ceased to have cyclic gonadotropin release and ovulation after surgery, and these animals also failed to release FSH and LH in response to estrogen. However, 4–7 months after surgery, the animals showed spontaneous resumption of cyclic gonadotropin release in response to endogenous or exogenous estrogen [46]. These data make it likely that, although the cycles can be maintained by an anatomically isolated medial basal hypothalamic-hypophyseal unit, the preoptic/anterior hypothalamic region plays important modulatory roles in normal menstrual cyclicity. The preoptic region also contains a considerable population of hypophysiotropic GnRH neurons in the monkey [47], indicating further that the reproductive significance of this anatomical site should not be overlooked in primates. Future studies of cFos expression in the rostral preoptic KP neurons of monkeys will be critically important to clarify whether these neurons are activated at the time of the positive estrogen feedback and the midcycle GnRH/LH surge.

KP Neurons in the Infundibular Area

In a variety of mammalian species including nonhuman primates [8, 35], the largest KP cell population has been localized to the mediobasal hypothalamus. Unlike the preoptic KP cell population, KP neurons in the ARC cosynthesize the tachykinin peptide neurokinin B (NKB) in the sheep [28, 29], the goat [48], the mouse [49], and the monkey [50]. NKB plays a crucial role in reproduction, and inactivating mutations of the genes encoding for NKB (TAC3) and the NKB receptor NK3 (TACR3) cause hypogonadotropic hypogonadism in the human [51, 52]. Tacr3 knockout mice are also subfertile [53], suggesting that NKB/NK3 signaling also plays important roles in the reproduction of this species. The recently introduced ‘KNDy neuron’ terminology [54] used to refer to the KP cell population of the ARC is based on synthesis of the opioid peptide dynorphin by the majority of KP/NKB cells, at least in the sheep [28, 29, 55], the goat [48], the mouse [49], and the rat [56, 57]. In sheep, dynorphin neurons of the ARC are critically involved in progesterone negative feedback to GnRH neurons. The majority of these cells contain progesterone receptors [58], and progesterone treatment increases preprodynorphin mRNA expression in the ARC and dynorphin levels in the cerebrospinal fluid [59]. Endogenous opioid peptides exert an inhibitory effect on the episodic secretion of LH in this species [60]. In mice, varying subsets of KNDy neurons, similarly to RP3V KP cells, contain galanin mRNA and immunoreactivity [30, 31] and also express glutamatergic [33, 56] and GABAergic [33] phenotype markers.

In humans, the largest KP cell population has been detected in the Inf (analogous to the ARC) both with in situ hybridization [34] and with immunohistochemistry [10,
The majority of these KP neurons appear to be multipolar, although dendritic labeling is often insufficient to safely assess cell morphology (fig. 2b). KP-IR cell bodies in the Inf, which often intermingle with scattered GnRH neurons (fig. 2b), form a continuum with labeled KP perikarya in the infundibular stalk (InfS) (fig. 1e, 2a).

Previous colocalization experiments in our laboratory addressed the presence of NKB [10, 61, 62] and dynorphin [63] immunoreactivities in KP neurons of the human Inf. These immunohistochemical studies revealed that the majority of KP and NKB neurons in the Inf of postmenopausal women express both neuropeptides [10]. In recent studies of a large cohort of postmenopausal women (≥ 55 years; n = 19), we found that 71.3 ± 5.9% of KP-IR somata contained NKB immunoreactivity and 83.7 ± 3.7% of NKB-IR somata contained KP immunoreactivity. However, in young human males most of the NKB-IR perikarya were single-labeled and only 35.8 ± 5.1% contained KP immunoreactivity.

Fig. 2. Immunohistochemical detection of KP neurons in the mediobasal hypothalamus of the human. a The largest KP cell population of the human is located in the infundibular area. IR neurons in the Inf, detected with black silver-gold-intensified dianobenzidine, are most numerous in samples from postmenopausal women. This cell population extends to the InfS. b As shown in high-power image, scattered GnRH neurons (brown dianobenzidine chromogen) often intermingle with KP-IR perikarya in the Inf. Scale bar in (b) corresponds to 285 μm in (a) and 20 μm in (b).

Fig. 3. Overlap between NKB-IR and KP-IR perikarya in three different human models. The ratios of double-labeled NKB and KP perikarya were determined quantitatively from dual-immunofluorescent specimens in which tyramide signal amplification approaches were applied to maximize both types of labeling [61]. In the young male (<50 years), aged male (≥50 years), and aged (postmenopausal) female (≥55 years) models available for these quantitative studies, the majority of KP-IR perikarya (72.7 ± 6.0% in young men, 77.9 ± 5.9% in aged men, and 83.7 ± 3.7% in postmenopausal women) also contained NKB immunoreactivity. Similarly, the majority of NKB-IR neurons in aged human subjects (68.1 ± 6.8% in aged men and 71.3 ± 5.9% in postmenopausal women) contained KP immunoreactivity. However, in young human males most of the NKB-IR perikarya were single-labeled and only 35.8 ± 5.1% contained KP immunoreactivity. * p < 0.05. For details of the methods, analysis, and colocalization results from males, see Molnár et al. [61].
In previous in situ hybridization studies by Rance and Young [70], NKB neurons in the Inf showed a distribution pattern similar to that of substance P (SP) neurons. This observation raised the possibility that the two tachykinin peptides derived from different genes might be coexpressed in a subset of KP neurons. Indeed, the results of our recent triple-immunofluorescent studies indicate that 25.1% of NKB-IR and 36.6% of KP-IR perikarya contain SP in the Inf of postmenopausal women; furthermore, 16.5% of all immunolabeled cell bodies are triple-labeled (KP/NKB/SP-positive) in this human model [64]. A quantitative analysis of SP cell numbers in the Inf of postmenopausal women also revealed significantly more SP-IR neurons in the Inf of postmenopausal women versus either age-matched or young men [64].

From a functional point of view, KP (KNDy) neurons of the ARC/Inf in different species have been strongly implicated in negative sex steroid feedback to GnRH neurons [28, 71, 72]. Accordingly, selective ablation of these cells in rats with the locally injected neurotoxin NK3-saporin prevented the rise in serum LH and attenuated the rise of serum FSH following ovariectomy [73]. It is worth noting that the suppressive effects of estradiol on gonadotropin secretion were not entirely blocked in these lesioned animals, indicating some redundancy in the neuronal pathways that mediate estrogen negative feedback [73]. The hypothalamic Inf of humans has also been known for a long time to represent an important site of sex steroid negative feedback to the reproductive axis. In situ hybridization studies revealed a robust postmenopausal hypertrophy of neurons that express estrogen receptor-α mRNA at this site [74] and later in situ hybridization experiments determined that neuronal hypertrophy in the absence of estrogens occurs selectively in SP [70], NKB [70], KP [34], and dynorphin [68] neurons (see also Menopausal Changes in KP and NKB Neurons in the Inf).

In some species, KP neurons of the ARC may also play a role in positive estrogen feedback to GnRH neurons. In sheep, estradiol treatment to induce a GnRH/LH surge results in cFos expression in ARC KP neurons [41]. Similarly, menstrual cyclicity in monkeys is preserved after deafferentation of the mediobasal hypothalamus [43, 44].

As discussed further in Intranuclear Network Connectivity of KP Neurons in the Infundibular Region, KP (KNDy) neurons of the ARC establish frequent contacts among one another [28, 55, 57]; this intranuclear communication was proposed to play a critical role in the regulation of GnRH/LH pulses [29, 48, 49, 54, 65].
Additional KP Neurons

In addition to the two major KP cell populations, relatively darkly stained KP neurons are scattered throughout the rostro-caudal extent of the human periventricular nucleus [10]. Neurochemical characterization of these neurons will help to determine if they are functionally analogous to KP neurons of the rostral periventricular region or rather the Inf. KP neurons at similar periventricular locations have not been reported in rodents [22].

The small population of KP mRNA-expressing cells identified with in situ hybridization in the bed nucleus of the stria terminalis of monkeys [35] has not been revealed yet in humans [10, 34], although a relatively dense KP-IR fiber network occurs at this site [10]. KP-IR fibers in the human bed nucleus of the stria terminalis are devoid of NKB immunoreactivity, indicating their origin outside the Inf [10]. The possibility of KP expression in other extrahypothalamic areas of the human has not been addressed using morphological tools. Anatomical studies will thus need to confirm the presence of KP neurons in the caudate nucleus, the globus pallidus, the nucleus accumbens, the putamen, and the striatum, sites where the KISS1 transcript has been detected with RT-PCR [75].

Connections of KP Neurons

The major anatomical projections of rodent KP neurons have been mapped using lesioning [76] and classical neuroanatomical tract tracing studies [76, 77] as well as the application of site-specific topographic markers [30, 32, 78] colocalized with the two distinct subsets of KP neurons and their projections. Similar neuroanatomical information from the human is less complete and restricted to the NKB-containing fiber projections that arise from the Inf [10].

Intraneuronal Network Connectivity of KP Neurons in the Infundibular Region

ARC KNDy neurons provide abundant axosomatic and axodendritic inputs to one another [28, 55, 57]. It occurs that this intraneuronal communication primarily uses excitatory neurotransmission by NKB via NK3 autoreceptors and inhibitory dynorphin signaling through κ-opioid autoreceptors. Accordingly, NK3 immunoreactivity [49, 57, 79, 80] and Tac2 and κ-opioid receptor mRNA expression [49, 81] have been revealed in mouse KNDy neurons. These cells respond with cFos expression [82] and depolarization [82] to the NK3 agonist senktide. NKB increases [65, 81, 83], whereas dynorphin or a selective κ-opioid receptor agonist decreases [81, 83] the activity of mouse KNDy neurons. While KP does not seem to influence the electric activity of KNDy neurons [83], it is the likely protagonist in the communication between KNDy cells and GnRH neurons, which, indeed, express Kissr1 [2, 11, 12]. The pulsatile KP output and GnRH secretory pulses are temporally correlated in the median eminence of the female rhesus monkey [84].

Information on the major neuropeptides and receptors in the above communication network was incorporated into new models of the GnRH/LH pulse generator [29, 48, 49, 54, 65]. Evidence from ovariectomized goats indicates that central NKB increases, whereas dynorphin A decreases, the frequencies of multunit activity volleys and LH secretory pulses [48]. The pulse generator model is very likely to change substantially in the future. For example, the role of some players including dynorphin [63] might not be universal in all species, whereas others can have more complex actions than initially thought. KP can also act in the ARC to modulate LH pulse frequency, in addition to providing the output signal of KNDy neurons toward the GnRH neuronal system. Accordingly, administration of a KP antagonist into the ARC could suppress the LH pulse frequency [85]. In addition, in male humans, chronic KP infusion could stimulate LH pulsatility [86] and a single injection of KP could reset the hypothalamic GnRH clock [87]. The role of new neurotransmitters/neuromodulators and receptors influencing and/or fine-tuning the GnRH/LH pulse generator may also emerge in the future, including SP that has been colocalized in human KP and NKB neurons [64]. Recent evidence from male mice indicates that multiple tachykinin receptors (NK1–3) account together for the excitatory effects of NKB on ARC KP neurons [83]. Interestingly, while the NK3 agonist senktide did not elicit a discernible electrophysiological response from GnRH neurons in earlier studies [65], recent evidence indicates that it can elicit GnRH release from the median eminence via a KP-independent mechanism [88].

The presence of the classic amino acid neurotransmitters GABA and glutamate in KP neurons [33] further increases the complexity of signaling mechanisms in ARC KP neurons.

In our studies of human hypothalami, we also found numerous axosomatic and axodendritic appositions among NKB neurons of the Inf [63] which are partly identical to KP neurons [10]. High-power light microscopic images reveal that KP-IR neurons form a compact cell group in the Inf (especially in aged human individuals) and establish frequent contacts with one another (fig. 2b, 4a).
Axosomatic and Axodendritic Efferent Connections to GnRH Neurons

Previous studies analyzing the efferent targets of KP cells focused on GnRH neurons in view of convincing evidence that the KP-induced release of LH can be prevented by GnRH antagonists in mice [1] and monkeys [5]. KP-IR neuronal contacts on GnRH cell bodies and dendrites exist in all species examined so far [6–9, 35], although several authors noted the surprising paucity and restricted occurrence of these contacts on a subpopulation of GnRH neurons [7, 8]. While immunohistochemical data are still unavailable to visualize the putative distribution of the KISS1R protein on the somatic and dendritic compartments of GnRH neurons, the finding that KP induces cFos expression [11, 13] and depolarization [12, 14, 15] in GnRH neurons lends functional support to the concept that KP can excite GnRH neurons via these axosomatic and axodendritic inputs. The major source of KP input to GnRH neurons of the rodent preoptic area appears to be the RP3V, given that these KP inputs rarely contain the ARC-specific neuropeptide marker NKB [30].

Light microscopic immunohistochemical studies from our laboratory established that axosomatic (Fig. 4a) and axodendritic (Fig. 4b) appositions also occur on human GnRH neurons [10]. The quantitative analysis of this innervation was carried out in the Inf, which contains relatively high numbers of GnRH neurons in the human. Comparison of the innervation patterns between aged male and female individuals provided evidence for robust sexual dimorphism in the incidence of these KP-IR axosomatic and axodendritic contacts, being several times higher in postmenopausal women compared to age-matched men [62]. For further sexually dimorphic features of the human KP and NKB systems, see Sexual Dimorphism of Human KP and NKB Neurons. Comparison of hypothalamic tissue samples from men below and above 50 years of age also revealed significant aging-related enhancement in the density of this innervation [61] (see also Menopausal Changes in KP and NKB Neurons in the Inf). Unlike in ovariectomized and estrogen-treated mice, where only 5.6% of the KP-IR apsositions to GnRH neurons contained NKB as an index of their ARC origin [30], about 26 and 10% of KP-IR afferent contacts on GnRH neurons in postmenopausal women and age-matched men, respectively, also contained NKB. Together with the frequent occurrence of single-labeled KP-IR and NKB-IR axons in the Inf, which indicates a considerable degree of segregation of the two neuropeptides in the human [10], the Inf is likely a major source of the KP-IR input to human GnRH neurons. Topographic markers that would help identify putative KP projections to GnRH neurons from the human rostral periventricular region need to be identified.

A xoaxonal Connections between KP and GnRH Neurons

In addition to influencing the somatic and dendritic compartments of GnRH neurons, there is accumulating evidence from different species that KP also regulates GnRH secretion by acting in the median eminence where
GnRH axon terminals are opposed to KP-IR [8, 10, 89] fibers. A large subset of the participating KP fibers arises from the ARC KP neuron population; these fibers are partly identical to NKB-IR fibers of ARC origin [76, 78] that are immediately opposed to GnRH-IR axons [56, 79]. Such direct axoaxonal contacts lack classical synaptic specializations at the ultrastructural level in goats [89] and rats [56]. While immunohistochemical evidence indicating KISS1R expression on GnRH axons is still missing, NK3 receptors have already been detected on hypophysiotropic GnRH axons of the rat [79]. Such receptors may account for the KP-independent induction of GnRH release from the mouse median eminence by senktide [88].

Dual-label immunohistochemical studies of human hypothalami established that KP-IR axons in the mediobasal hypothalamus form sporadic appositions to the hypophysiotropic GnRH-IR fibers in the InfS (fig. 4c, d) and around the portal capillary vessels of the postinfundibular eminence [10]. Unlike in rats, where most GnRH axons entering the median eminence terminate in the external zone, many GnRH axons in humans and monkeys travel large distances in the InfS and descend all the way down to the neurohypophysis [90]; GnRH fibers in this descending GnRH fiber tract are also accompanied and occasionally contacted by KP-IR axons.

There is abundant functional evidence from different species that KP has an important site of action on the axonal compartment of GnRH neurons. First, GnRH release from the mediobasal hypothalamic explants of mice (which contain the hypophysiotropic GnRH axons but only few, if any, GnRH cell bodies) can be stimulated by KP in a Kiss1r-dependent and action potential-independent manner [91] and KP can similarly stimulate GnRH release from cultured ovine median eminence explants [92]. Furthermore, systemic KP injection induces in vivo LH secretion in a variety of species [5, 13, 93], including humans [4, 94], in accordance with putative site(s) of KP action outside the blood-brain barrier. It has to be recognized that GnRH neurons send fiber projections to multiple circumventricular organs that can be reached by KP from the systemic blood. Such brain sites include the organum vasculosum of the lamina terminalis. It was recently shown that mouse GnRH neurons in the immediate vicinity of the organum vasculosum of the lamina terminalis have a highly branched dendritic tree which is accessible to molecules circulating in the systemic blood [95]; KP puffed onto these dendrites could excite GnRH neurons [95]. Of note, the relevance of this site and the mechanism of action of KP in the human is uncertain, considering that human GnRH neurons are widely distributed in the hypothalamus and most of them do not seem to send projections to the lamina terminalis [90].

In different species, the GnRH/LH pulse generator is thought to be located in the mediobasal hypothalamus. Accordingly, mediobasal hypothalamic explants from fetal and adult human brains release GnRH in a pulsatile manner [96]. Similarly, GnRH is released episodically from mediobasal hypothalamic explants of the rat which are devoid of GnRH cell bodies and only contain the hypophysiotropic GnRH axon projections [97]. This observation makes it likely that the proposed pacemaker KP cells of the ARC/Inf generate GnRH pulses by influencing the secretory output of GnRH axons, rather than acting on the somatodendritic compartment. This assumption gains support from the observation that pulsatile KP output and GnRH secretory pulses are temporally correlated in the median eminence of the monkey [84].

KP Fiber Projections to the Hypophysial Portal Vasculature

KP-IR fibers in the mouse [98] and the rat [99] median eminence preferentially target the internal zone, suggesting little if any communication between KP neurons and the hypophysial portal capillaries of the external zone. This view is strengthened by the lack of FluoroGold uptake from the systemic circulation by mouse KP neurons [77]. KP fibers were also observed mostly in the internal zone of the monkey median eminence [8]. The major source of KP fibers in the rodent median eminence appears to be the ARC [76, 78], although KP fibers of RP3V origin also reach the mediobasal hypothalamus [78].

Previous immunohistochemical studies from our laboratory [10, 63] showed a highly abundant network of KP-IR axons around the portal vasculature of the human postinfundibular eminence which contains a superficial and a deep portal capillary plexus [100]. These observations raise the possibility that, unlike in rodents, KP is secreted into the hypophysial portal circulation of the human as a hypophysiotropic factor. It occurs that species may vary considerably regarding the presence/absence of hypophysiotropic KP axon projections. While there is evidence from ewes to indicate KP secretion into the portal circulation [101], similarly low portal blood KP levels observed in ovariectomized ewes that were untreated or given estrogen to elicit an LH surge suggest that the anterior pituitary is not a major site of action of KP on LH release. This view is supported by the lack of effect of intravenous KP on LH release in hypothalamo-pituitary-disconnected ewes [101]. Somewhat conflictingly, some [101–103], albeit not all [13, 93], in vitro studies did identify mild
stimulatory KP effects on LH release. Furthermore, Kiss1r mRNA expression [75, 101, 102, 104] and Kiss1r immu-
moreactivity [104] were detected in the adenohypophysis.

Other Efferent Projections
Further important KP fiber tracts arising from the ARC as well as the RP3V were localized periventricularly
and were found to carry fibers to several important pre-
optic, hypothalamic, and septal nuclei and to the bed nu-
cleus of the stria terminalis [76, 77]. A few hypothalamic
target neurons to KP fiber projections have already been
identified. Anatomical information exists from rats that
the tuberoinfundibular dopaminergic system of the dor-
somedial ARC receives sexually dimorphic KP-IR and
NKB-IR innervation from KNDy neurons [105], whereby
KP and NKB may regulate the secretion of prolactin
[106]. Neuronal NO synthase cells in the preoptic region
also receive KP-IR innervation and express Kiss1r [107].
The KP-induced phosphorylation of neuronal NO syn-
thase in this circuitry has been strongly implicated in the
KP-dependent preovulatory activation of GnRH neu-
rons, whereas basal NO synthase activity maintains the
tonic inhibition of the GnRH system during negative es-
trogen feedback [107].

The bulk of KP fiber projections in the human hypo-
thalamus also occurs periventricularly in the medial hy-
opothalamus [10]. Beyond GnRH cells innervated by the
KP axon projections [10], further target cells of KP fibers
in the human remain to be explored. Preliminary immu-
nohistochemical data from our laboratory suggest that a
similar connectivity between KP cells and the dopami-
nergic systems also exists in the human periventricular
nucleus. The distinction between axon projections aris-
ing from KP neurons in the RP3V and from those in the
infundibular area, respectively, will be greatly facilitated
once site-specific immunofluorescent markers for the
two subsets of KP neurons are identified.

Afferent Inputs to KP Neurons
Specific inputs to KP cells may play important roles in
mediating stress, metabolic, and hormonal signals to the
putative GnRH pulse generator in adults. Relatively little
information has been published about these neuronal af-
ferents. For example, KP neurons in the RP3V of mice
receive vasopressinergic innervation from the supra-
chiasmatic nucleus, which is thought to play a critical role in
circadian signaling to GnRH neurons for timing of the
proestrous afternoon GnRH/LH surge [108]. Recent evi-
dence indicates that GnRH-IR axons also provide synap-
tic inputs to both the RP3V and ARC populations of KP

neurons [109]. Further neurotransmitters acting up-
stream from KP cells possibly include glutamate which
can induce the bursting activity of KP neurons [110]. The
glutamatergic regulation of KP neurons may also be crit-
ically involved in the onset of puberty [111].

The innervation of human KP neurons is currently un-
explored.

Sexual Dimorphism and Aging-Dependent Changes
in the Human KP System

Sexual Dimorphism of Human KP and NKB Neurons
Both the preoptic (RP3V) and the ARC subsets of KP
neurons contain receptors for estradiol, testosterone, and
progesterone [23, 26, 27, 71]. In rodents, androgens as
well as estrogens can upregulate KP expression in the
RP3V [23, 26, 71] at the putative site of positive estrogen
feedback [24]. In contrast, KP expression in the ARC/Inf
is negatively regulated by sex steroid hormones in rodents
and other mammals [23, 26, 69, 71], as is NKB expression
at this site [69, 70, 112]. Sex differences in the KP and
NKB neuronal systems are partly caused by the activa-
tional effects of the gonadal steroid hormone milieu
which changes depending on the reproductive status and
differs in males and females. Steroid hormones also exert
robust organizational effects on the expression of KP and
NKB in various species during development. Organiza-
tional effects have been studied most extensively in the
case of the sexually dimorphic KP neuron population of
the rodent RP3V, which is imprinted neonatally and re-
sults in higher KP cell numbers in adult females com-
pared to males [25] (see also Major Groups of Human
Hypothalamic KP Neurons). Other studies identified or-
ganizational effects in the formation of sex-specific pro-
jection fields by NKB neurons in the rat ARC [56] and in
KP-IR labeling of the mouse ARC [113]. Unlike in ro-
dents where the sexual dimorphism of the ARC KP and
NKB systems seems to be relatively mild, the ARC of fe-
male sheep contains much higher NKB [114] and KP [29]
cell numbers compared to the values in males. A recent
study identified estrogen-dependent and estrogen-inde-
dependent components of the sexual dimorphism develop-
ing in the mouse RP3V and ARC [113].

Putative anatomical sex differences in the human hy-
opothalamic KP and NKB systems are likely to develop
under combined organizational and activational gonadal
steroids effects. Recent immunohistochemical work pro-
vides evidence that human KP and NKB neurons are
highly sexually dimorphic [10, 62, 115].

42

Neuroendocrinology 2014;99:33–48
DOI: 10.1159/000356903

Hrabovszky
The Human Hypothalamic KP System

First, the RP3V was found to contain a compact KP cell population in premenopausal women, but not in men [10]. Full characterization of this cell population will require further investigation of samples from male and female individuals of different age groups. In this study, we also noticed a conspicuous sex difference in the regional density of KP-IR cell bodies and fibers in the Inf [10]; specimens from male subjects (especially those derived from young men) often exhibited extremely low numbers of KP-IR perikarya and fibers at this site.

A second quantitative immunohistochemical study from our laboratory analyzed sexually dimorphic features in hypothalamic samples from ‘aged male’ (>50 years) and postmenopausal female (>55 years) subjects [62]. The density of KP-IR cell bodies, the density of KP-IR fibers, and the incidence of contacts these fibers established on the cell bodies and dendrites of GnRH neurons were significantly higher in aged women compared to men [62]. A milder sex difference in the NKB system was reflected in a somewhat higher regional density of NKB-IR somata in women compared to men [62]. In addition, larger KP-IR and NKB-IR cell bodies (mean immunolabeled profile area) were observed in females than in males. Somewhat unexpectedly, immunofluorescent studies only identified a partial overlap between KP-IR and NKB-IR axons. The colocalization in fibers showed a significant sex dependence, with KP being colocalized in a higher percentage of NKB-IR afferents to GnRH neurons in women (31%) compared to men (9%). The percentage of KP-IR contacts cocontaining NKB was also higher in females (31%) compared to men (9%). These sex differences might be mostly attributable to the lack of estrogen negative feedback in aged women, whereas testosterone can continue to suppress KP and, to a lesser extent, NKB synthesis in men. Accordingly, comparative in situ hybridization studies of KISS1 [34] and TAC3 [70] mRNA-expressing neurons in pre- versus postmenopausal women provided evidence that these cells exhibit hypertrophy and higher cell numbers and cellular mRNA levels in the postmenopausal period compared to the premenopausal period. The negative regulation of KP- and NKB-encoding genes by sex steroids is in accordance with similar observations from other species [23, 25, 26, 69, 71, 116, 117]. Because samples from young individuals were not available for immunohistochemical comparisons with samples from young males, based on these studies it was impossible to determine whether or not the quantified neuroanatomical features would also be sexually dimorphic when sex steroid levels are high and negative feedback is in place in both sexes.

The sexual dimorphism of the human hypothalamic NKB system has also been addressed by other investigators [115]. In that study, the NKB-IR innervation of the Inf was found to be higher in adult human females compared to males, whereas the pars tuberalis received dense NKB-IR innervation in adult males, but not in females [115]. Furthermore, the Inf volume occupied by NKB immunoreactivity was significantly lower in adult men than in adult women and in adult male-to-female transsexuals [115]. These anatomical differences were present in young adults under the influence of negative sex steroid feedback, raising the possibility that they are partly due to organization sex steroid effects earlier in development.

Menopausal Changes in KP and NKB Neurons in the Inf

With the onset of menopause, the depletion of ovarian follicles leads to the loss of circulating estrogens. This causes the absence of negative estrogen feedback [118]. A comparison of histological samples from pre- and postmenopausal women revealed profound anatomical changes in the Inf, where negative feedback is thought to take place [118]. In situ hybridization studies identified postmenopausal hypertrophy in neurons that express the transcripts encoding for estrogen receptor-α [74], SP [70], NKB [70], KP [34], and dynorphin [68]. These morphometric alterations were also associated with increased TAC1 [70], TAC3 [70], and KISS1 [34] and decreased prodynorphin [68] mRNA expression in this region.

Increased synthesis of TAC3 [70] and KISS1 [34] mRNAs in postmenopausal women also results in very high levels of KP and NKB immunoreactivities [62]. It is interesting to note that our laboratory has processed a large number of samples for KP and NKB immunohistochemistry from women above 80 years of age; KP and NKB immunoreactivities (including KP and NKB cell and fiber densities, and incidences of contacts on GnRH cell bodies and dendrites) remained very high in these aged individuals, indicating that these neurons do not have an intrinsic mechanism to halt the enhanced neuropeptide synthesis in the absence of circulating estrogens. Dysregulation of NKB (or another KNDy peptide) synthesis during menopausal transition was proposed to contribute to hot flushes via an altered NKB input to thermoregulatory centers [119]. In addition, KNDy neuron ablation prevented the dramatic effects of ovariectomy and estradiol replacement on body weight and abdominal girth. This finding indicates that KP and/or NKB also play an important role in the estrogenic regulation of body weight homeostasis [73].
Aging-Dependent Changes in the KP and NKB Systems of Men

The aging-related decline in reproductive functions is less dramatic in human males than in females because of the sustained testosterone production by the testes [120]. Although the gonadal functions of men can be well preserved throughout life, the negative feedback response of the reproductive axis to testosterone shows a declining trend in aging men [121]. Clinical symptoms of hypogonadism, including decreased morning erections, erectile dysfunction, and a decreased frequency of sexual thoughts, become more common in men with aging [122]. Midlife transition is often characterized by decreased serum levels of free testosterone and dihydrotestosterone and increased levels of LH, FSH, and sex hormone-binding globulin [123, 124]. In addition, aging is associated with decreased pulsatile and increased basal LH secretion and a decline in the LH secretory burst mode [121]. Elderly men also secrete LH and testosterone more irregularly and more asynchronously than do young men [125, 126]. Some of these endocrine alterations result from reduced androgen receptor-mediated negative feedback to the hypothalamus [121]. In view of animal experiments indicating that KP and NKB neurons also play an important role in testosterone negative feedback to the male hypothalimus [65, 71], we anticipated enhanced central KP and NKB signaling in the Inf of aged versus young men. To address the predicted age-dependent enhancements of central KP and NKB signaling, we carried out quantitative immunohistochemical studies on a relatively large number (n = 20) of hypothalamic samples from men [61].

Indeed, the comparative analysis of KP and NKB immunoreactivities of the Inf between arbitrarily defined ‘young’ (<50 years) and ‘aged’ (≥50 years) men revealed conspicuous aging-related anatomical changes [61]. Robust aging-dependent enhancements were identified in the regional densities of KP-IR perikarya and fibers, and in the incidence of contacts they established with the cell bodies and dendrites of GnRH neurons [61]. NKB-IR perikarya, fibers, and axonal appositions to GnRH neurons also increased with age, but to lesser extents [61]. In addition, in dual-immunofluorescent studies, the incidence of NKB-IR perikarya that cocontained KP increased from 36% in young men to 68% in aged men, indicating that more NKB neurons started to express detectable levels of KP in aged individuals (fig. 3) [61]. Finally, we identified a mild but significant hypertrophy of KP-IR and NKB-IR neurons which was reminiscent in magnitude to the previously reported hypertrophy of unidentified neurons in the Inf of aged men [127].

It seems likely that the aging-related enhancements of the immunohistochemical signals are consequences of the reduced negative sex steroid feedback to KP and NKB neurons in aged, compared to young, men. The heavier KP and NKB inputs to GnRH neurons may cause the enhanced stimulation of the reproductive axis in aged men. It is worthy of note that the KP system showed an overall higher response (fold-change of quantified immunohistochemical measures) to aging than the NKB system [61]. This finding might be explained by a higher sex steroid responsiveness of the KISS1 gene versus the TAC3 gene. This putative regulatory difference is also reflected in the higher degree of sexual dimorphism of the KP versus the NKB system that we observed in aged subjects [62]. Of note, the mouse Kiss1 gene also shows a higher responsiveness to estrogen in comparison with the NKB-encoding Tac2 gene [128]. It requires clarification to what extent the enhanced KP and NKB signaling upstream from the human GnRH neurons represents an adaptive response to reduced androgen levels or, alternatively, the consequence of an aging-related decline in the androgen sensitivity of the hypothalamus.

Remaining Important Issues

In situ hybridization and immunohistochemical studies of postmortem human hypothalami will remain valuable tools to study several questions unanswered so far. The aims of future studies will include: further anatomical characterization of the KP cell population in the human rostral periventricular area; localization of steroid hormone receptors in human KP neurons; identification and subcellular localization of neuropeptide receptors (KISS1R, NK1–3, κ-opioid receptor, etc.) in KP and GnRH neurons; identification of new hypothalamic and extrahypothalamic target cells to KP neurons; characterization of the afferent connectivity of KP neurons; neurochemical characterization of KP neuron populations; identification of pubertal changes in KP neurons, and clarification of organizational and activation effects contributing to the sexual dimorphism of the human KP neuronal system.

Acknowledgements

The research leading to these results received funding from the National Science Foundation of Hungary (OTKA K83710, K100722), the National Development Agency (BONUS HU 08/2-2011-0006), and the Seventh Framework Programme of the European Community (FP7/2007–2013) under grant agreement No. 245009.
References

51 Smith JT, Li Q, Pereira A, Clarke IJ: Kisspeptin neurons in the ovine arcuate nucleus and preoptic area are involved in the preovulatory luteinizing hormone surge. Endocrinology 2009;150:5530–5538.

Rometo AM, Rance NE: Changes in prody
norphin gene expression and neuronal mor-
phology in the hypothalamus of postmeno-
apausal women. J Neuroendocrinol 2008; 20:
1376–1381.

Eghlidi DH, Haley GE, Noriega NC, Kohama
SG, Urbanski HF: Influence of age and 17be-
ta-estradiol on kisspeptin, neuropeptide Y, and
prodynorphin gene expression in the arcuate-
median eminence of female rhesus macaques.
Endocrinology 2010; 151: 3783–3794.

Rance NE, Young WS 3rd. Hypertrophy and an-
increased gene expression of neuropeptides con-
taining neuropeptide-Y and substance-P mes-
senger ribonucleic acids in the hypothalami of
postmenopausal women. Endocrinology 1991;
128:2239–2247.

Smith JT, Dungan HM, Stoll EA, Gottsch ML,
Yeo SH, Herbison AE: Projections of arcuate
Eghlidi DH, Haley GE, Noriega NC, Kohama
SG, Urbanski HF: Influence of age and 17be-
ta-estradiol on kisspeptin, neuropeptide Y, and
prodynorphin gene expression in the arcuate-
median eminence of female rhesus macaques.
Endocrinology 2010; 151: 3783–3794.

Rance NE, Young WS 3rd. Hypertrophy and an-
increased gene expression of neuropeptides con-
taining neuropeptide-Y and substance-P mes-
senger ribonucleic acids in the hypothalami of
postmenopausal women. Endocrinology 1991;
128:2239–2247.

Smith JT, Dungan HM, Stoll EA, Gottsch ML,
Yeo SH, Herbison AE: Projections of arcuate
Eghlidi DH, Haley GE, Noriega NC, Kohama
SG, Urbanski HF: Influence of age and 17be-
ta-estradiol on kisspeptin, neuropeptide Y, and
prodynorphin gene expression in the arcuate-
median eminence of female rhesus macaques.
Endocrinology 2010; 151: 3783–3794.

Rance NE, Young WS 3rd. Hypertrophy and an-
increased gene expression of neuropeptides con-
taining neuropeptide-Y and substance-P mes-
senger ribonucleic acids in the hypothalami of
postmenopausal women. Endocrinology 1991;
128:2239–2247.

Smith JT, Dungan HM, Stoll EA, Gottsch ML,
Yeo SH, Herbison AE: Projections of arcuate
Eghlidi DH, Haley GE, Noriega NC, Kohama
SG, Urbanski HF: Influence of age and 17be-
ta-estradiol on kisspeptin, neuropeptide Y, and
prodynorphin gene expression in the arcuate-
median eminence of female rhesus macaques.
Endocrinology 2010; 151: 3783–3794.

Rance NE, Young WS 3rd. Hypertrophy and an-
increased gene expression of neuropeptides con-
taining neuropeptide-Y and substance-P mes-
senger ribonucleic acids in the hypothalami of
postmenopausal women. Endocrinology 1991;
128:2239–2247.

Smith JT, Dungan HM, Stoll EA, Gottsch ML,
Yeo SH, Herbison AE: Projections of arcuate
Eghlidi DH, Haley GE, Noriega NC, Kohama
SG, Urbanski HF: Influence of age and 17be-
ta-estradiol on kisspeptin, neuropeptide Y, and
prodynorphin gene expression in the arcuate-
median eminence of female rhesus macaques.
Endocrinology 2010; 151: 3783–3794.

Rance NE, Young WS 3rd. Hypertrophy and an-
increased gene expression of neuropeptides con-
taining neuropeptide-Y and substance-P mes-
senger ribonucleic acids in the hypothalami of
postmenopausal women. Endocrinology 1991;
128:2239–2247.

Smith JT, Dungan HM, Stoll EA, Gottsch ML,
Yeo SH, Herbison AE: Projections of arcuate
Eghlidi DH, Haley GE, Noriega NC, Kohama
SG, Urbanski HF: Influence of age and 17be-
ta-estradiol on kisspeptin, neuropeptide Y, and
prodynorphin gene expression in the arcuate-
median eminence of female rhesus macaques.
Endocrinology 2010; 151: 3783–3794.

Rance NE, Young WS 3rd. Hypertrophy and an-
increased gene expression of neuropeptides con-
taining neuropeptide-Y and substance-P mes-
senger ribonucleic acids in the hypothalami of
postmenopausal women. Endocrinology 1991;
128:2239–2247.

DOI: 10.1159/000356903

Neuroendocrinology 2014;59:33–48

Hrabovszky