Esophageal Epithelial Resistance

Claudia Günthera Helmut Neumanna Michael Viethb

aDepartment of Medicine I, University of Erlangen-Nuremberg, Erlangen, bInstitute of Pathology, Klinikum Bayreuth, Bayreuth, Germany

\textbf{Key Words}
Esophagus · Epithelium · Resistance · Tight junctions · Histology · Immunohistochemistry

\textbf{Abstract}
Besides its important role of digestion and absorption, esophageal tissue has an essential role as a major barrier against intraluminal pathogens like hostile microorganisms and toxins. This barrier function is achieved via various mechanical, chemical, and immunological mechanisms which are typically altered in inflammatory diseases, thereby causing subsequent damage of the mucosa. In this review we will focus on the main structural and functional barriers of host defense within the esophageal mucosa, including the epithelial layer, membrane-bound and secretory mucins, and different types of defensins. In addition, we will discuss the relevance of biofilm on esophageal tissue and will illustrate the importance of different regulators of intestinal permeability like zonulin and desmosomal components.

\textbf{Introduction}
The esophageal epithelium is continuously affected by various extrinsic (e.g. bacteria and food antigens) and intrinsic factors (e.g. gastroesophageal acid reflux) \cite{1}. Despite this ongoing contact of the esophageal tissue with potential noxious agents, under normal circumstances no damage of the epithelium occurs. In this context, the main underlying protective factors of esophageal defenses are (1) luminal acid clearance and (2) esophageal epithelial resistance \cite{2}.

Luminal acid clearance is achieved by swallow-initiated peristalsis, gravity, and saliva \cite{3}. Saliva includes, among others, bicarbonate, which negates the effect of acid reflux \cite{4}. Nevertheless, luminal acid clearance is delayed and dependent on the time of day, as the beneficial effect of gravity, when in the upright posture, is limited during sleep \cite{5}.

Since the esophageal epithelium is constantly impacted by noxious agents, esophageal epithelial resistance plays a crucial role in protection (table 1). In this review we will focus on the components of tissue resistance and will describe the mechanisms of action of the epithelium against injury.

\textbf{First Line of Defense – The Mucus Layer}
The first epithelial barrier against noxious material is the mucus layer, which can directly neutralize acid in the esophagus and protects by inhibiting contact of luminal agents to the esophageal squamous epithelium \cite{6}. It is known that expression of mucins changes within the dif-
ferent parts of the gastrointestinal tract and during patho-
genic/inflammatory conditions. Moreover, changes in
the mucus layer show dynamics due to mechanical and
chemical erosions as one step in the dynamics of damage
and restoration by continuous secretion from proper
esophageal glands, the squamous epithelium itself, and
swallowed saliva [6]. Other defensive proteins secreted
from the proper esophageal glands include bicarbonate,
prostaglandin E₂, epidermal growth factor, and trans-
forming growth factor-α. Secretion is stimulated by
5HTR4 [7–9]. In addition, acid and pepsin can also in-
crease expression of esophageal mucins [6, 10].

Mucins are protective glycoproteins that have O-
linked glycosylation and tandem repeat domains, and are
also more or less resistant to action of proteases due to
repeated sulfur bindings [6]. These sulfur bindings can be
broken by acetylcysteine which is also used pharmaceuti-
cally. Within the gastrointestinal tract, two major forms
of mucins exist: (1) a membrane bound form and (2) a
secreted form.

Mucin secretion of the esophageal squamous epithe-
lium can be demonstrated by using a periodic acid-Schiff
stain, which stains the esophageal mucins with a light-
blue color. In this context it was shown that mucin secre-
tion is decreased in erosive esophagitis and increased in a
reversible fashion again with mild esophagitis and after
curing esophagitis with complete mucosal healing, irre-
versibly [10, 11]. It turned out that expression especially
of Muc1 and Muc4 is decreased but Muc3 and Muc5AC
glycoproteins are increased. It cannot be explained in de-
tail why individuals with endoscopic negative reflux dis-
 ease have mucin expression levels like healthy controls.
Either people believed to suffer from negative reflux dis-
 ease suffer from nonreflux disease-related symptoms or
those considered to represent a healthy control may par-
tially have refluxate in the esophagus but without any
symptoms [12]. Currently it is not clear how to solve this
paradox. Compared to patients with Barrett’s esophagus
(BE) with and without dysplasia, only a few conclusive
studies are available on the esophageal squamous epithe-

Second Line of Defense – The Multilayered
Squamous Epithelium

The second epithelial barrier is composed of the mul-
tilayered stratified nonkeratinized squamous epithelium
composed of the stratum granulosum, stratum spinosum,
and stratum germinativum (i.e. basal layer; fig. 2). The
stratum granulosum is the most luminal layer and pro-
vides a permeability barrier [17–20]. This permeability
barrier is composed of cell membranes in combination
with junctional complexes that prevent direct diffusion of
luminal contents into the cells or the intercellular spaces. Cell membranes are hydrophobic; in combination with the sodium channels that are inhibited by luminal acid pH, no acidic material can diffuse into an intact cell membrane. Junctional complexes between the cells are composed of tight junctions, adherent junctions, and desmosomes composed of desmosomal cadherins with inter- and extracellular domains that limit the rate of ion diffusion through such complexes between the cells [21, 22]. Tight junctions are composed of occludins and claudins (mainly claudin1 and claudin4) [23, 24]. Adherent junctions mainly consist of E-cadherin [25]. These complexes seal intercellular spaces and connect cells (fig. 1–3). Desmosomes within the squamous epithelium allow not

Fig. 2. Pathophysiology of gastroesophageal reflux disease. First, the acid-pancreatin attacks the multilayered squamous esophageal epithelium, weakening cell junctions. This leads to a widening of cell gaps thus allowing acid penetration into the lamina propria.

Fig. 3. Interaction of different desmogleins and plasma membrane.
only the sealing and connecting of cells, but can also provide cellular, protein, or ion transport through intercellular spaces [26].

Third Line of Defense – Acid Transport

In situations with luminal H+ excess with passive diffusing into cells or metabolic intracellular H+ production, ion transporters in the cell membrane are capable of removing excessive H+ from the cell, increasing the pH to a neutral level. Within the esophageal epithelium these transporters are located basolaterally and contain a sodium-dependent, chloride-bicarbonate exchanger and a sodium-hydrogen ion exchanger of isotype 1 [21, 22]. In case intercellular pH needs to be decreased, another channel gets activated resulting in the transportation of H+ into the cell: the disulfonic stilbene-sensitive Na-independent, chloride-bicarbonate exchanger [27, 28]. Accordingly, when acid is recruited in the intercellular space, the previously mentioned chloride-bicarbonate exchanger operates to acidify the cell cytosol by exchanging intracellular bicarbonate for extracellular chloride. In this context, it has been shown via in vitro experiments that pharmacological blockade of this exchanger can prevent acid-induced cell necrosis of the esophageal epithelium [27, 28].

Other Factors Influencing Esophageal Epithelial Resistance

Other factors that influence esophageal epithelial resistance include continuous blood flow to supply cells with oxygen and nutrients to ensure the integrity of the epithelium. Cell restitution after injury can be achieved within 30–60 min due to migration of viable cells adjacent to the injury into the necrotic areas [29–31]. Regeneration is a much slower process that can take up to days or weeks because it depends on mitosis and synthesis of DNA and proteins. A major disadvantage of the regeneration process is that regeneration occurs from the basal cell layer, provoking the requirement of cells to migrate upwards to the necrotic area. Prolonged damage with repeated sequences of ongoing damage will disturb the balance between healing and damaging, thereby resulting in erosive or ulcerative esophagitis. Cell injury also attracts inflammatory infiltrates. Chemokines and cytokines recruit immune cells by paracrine and systemic spread. An inflammatory reaction contributes to the clearance of debris, but also damages the normal adjacent epithelium by toxic noxious agents like reactive oxygen and nitrogen species. In addition, it is known that esophageal inflammation impairs lower esophageal sphincter pressure and contractility as well as delays acid clearance [32]. Accordingly, therapies aim to disrupt this vicious cycle by profound acid suppression.

Conclusion

The esophageal epithelium is affected by various noxious luminal agents, most notably acid and pepsin. Multiple esophageal defense mechanisms protect the esophageal epithelium under normal circumstances from severe injury. In contrast, the absence of these defense mechanisms leads to mucosal inflammation (e.g. erosive esophagitis) and may predispose to other, noninflammatory conditions like BE and esophageal cancer. Successful protection mechanisms of the esophageal epithelium include (1) luminal acid clearance, (2) the mucus layer, (3) the multilayered squamous epithelium, (4) acid transport mechanisms, (5) continuous blood flow, and (6) various cytokine-transmitted regeneration processes. A balanced homeostasis between these protective factors is essential for a healthy environment. Nevertheless, the mechanisms finally leading to a decrease of esophageal defense remain poorly understood and need further investigation.

Disclosure Statement

None of the authors has any conflicts of interests related to this article/work to declare.

References

