Immunopathogenesis of Eosinophilic Esophagitis

Hans-Uwe Simona Alex Straumannb

aInstitute of Pharmacology, University of Bern, Bern, and bSwiss EoE Clinic and Research Group, Olten, Switzerland

\textbf{Key Words}
Allergy · Cytokines · Eosinophilic esophagitis · Inflammation

\textbf{Abstract}

\textbf{Background:} Eosinophilic esophagitis (EoE) is a chronic inflammatory disease of the esophagus associated with dysphagia in adults and refractory reflux syndromes in children.

\textbf{Methods:} Immunological and genetic approaches have been used to better understand the pathophysiology of the underlying inflammation.

\textbf{Results and Conclusions:} Evidence has accumulated that EoE represents a T-helper (Th) 2-type inflammatory disease, in which allergens play a role in triggering the disease. The majority of the patients suffer from concurrent allergic rhinitis, asthma, and eczema, and have a history of atopy. The chronic inflammatory response in EoE is associated with tissue damage and remodeling, both of which lead to esophageal dysfunction and bolus impaction. The new insights into the pathophysiology have resulted in the development of the first pharmacological therapies of EoE.

\textbf{Introduction}

In a broad spectrum of inflammatory diseases, eosinophils are found among infiltrating cells [1, 2]. For example, in allergic diseases, such as atopic dermatitis [3], bronchial asthma [4, 5], and rhinosinusitis [6], eosinophil numbers are increased. However, the pathogenic role of eosinophils in these diseases has not been defined yet. The functions of eosinophils have been related to the protection against helminth parasites [7], immunopathology [7, 8], remodeling processes, and immunoregulation [9]. Although the functional role of eosinophils often remains uncertain, their presence suggests that an immunologic mechanism contributes to the pathogenesis of given diseases. Since eosinophil infiltration of the esophageal tissue is a hallmark of eosinophilic esophagitis (EoE), immunological mechanisms have been investigated over the last decade by several groups. Here, we summarize published key findings that clearly point to the immune system as a central player in the pathogenesis of EoE.

\textbf{Cells and Cytokines}

The esophageal epithelium of EoE patients contains not only eosinophils, but also IL-5-expressing T cells, B cells, and IgE-bearing mast cells that suggest EoE is an allergic disease [10] (fig. 1). A summary of quantitative analyses of infiltrating inflammatory cells in the esophageal epithelium has recently been published [11]. Moreover, it has also been demonstrated that the inflammatory response in EoE patients is restricted to the esophagus and does not involve the stomach and/or duodenum [10]. The Th2-type inflammatory profile of EoE was sub-
Moreover, esophageal epithelial cells of EoE patients have been reported to produce thymic stromal lymphopoietin [18], a cytokine favoring Th2 differentiation [19]. Recent studies point to the possibility that the role of regulatory T cells may differ between pediatric and adult EoE. While increased numbers of regulatory T cells were seen in pediatric cases, adult EoE patients were found to have a relative lack of FoxP3-positive T cells [20]. Taken together, the main allergen-induced immunological mechanisms leading to eosinophilic inflammation and allergen-specific IgE synthesis seem to be very similar to other allergic diseases (fig. 1).

These correlative studies in EoE patients were largely confirmed by mechanistic studies performed in experimental mouse models of EoE. For instance, T cell-deficient, but not B cell-deficient, mice seem to be unable to develop EoE [21]. Moreover, experimental EoE was inducible by allergens [22] and IL-13 [23], and IL-5 and eotaxin were found to be crucial for disease development [23]. A recent study suggests that exaggerated basophil responses triggered by thymic stromal lymphopoietin contribute to EoE pathogenesis [24]. Taken together, the data in experimental mouse systems support the view that EoE likely represents an allergic disease in which T cells and eosinophils play key pathogenic roles (fig. 1).

Tissue Damage and Remodeling

Remodeling of the esophagus is a hallmark of EoE, and both histological and molecular features of this process have been described [25–28]. Extracellular matrix proteins were found to be deposited in significant amounts in EoE patients [25–27]. Interestingly, the deposition of extracellular matrix proteins, including its associated subepithelial fibrosis, was reversible in EoE patients receiving topical corticosteroid therapy [25, 27]. TGF-β1, a key cytokine for epithelial growth, fibrosis, and tissue remodeling, has been identified with EoE [25–27]. Tissue remodeling suggests the existence of previous tissue damage. Indeed, TUNEL-positive epithelial cells indicative for cell death were particularly found in close proximity to eosinophil infiltrations [26], and tissue remodeling correlated with eosinophil degranulation [27].

The latter observations point to a possible role of the eosinophil in the immunopathology of the esophagus in EoE patients. Immunohistochemical studies have revealed evidence for eosinophil degranulation in the esophageal epithelium [26, 27, 29]. The granule proteins major basic protein, eosinophil cationic protein, and eosinophilic tissue damage and remodeling.

![Image of a diagram showing the immunopathogenesis of EoE](image-url)

Fig. 1. Simplified scheme of the immunopathogenesis of EoE. EoE is believed to be triggered by aero- and food allergens. The epithelial cells (EC) of the esophagus that are activated by IL-13 (not shown) actively contribute to the inflammatory process. Thymic stromal lymphopoietin (TSLP) promotes dendritic cell (DC)-mediated Th2 differentiation and activates basophils (Baso) as well as eosinophils (Eos). TNF-α increases adhesion molecules on endothelial cells (not shown) and eotaxin-3 attracts Eos. IL-13 helps B cells to produce IgE. IL-9 activates mast cells (MC), which, like Baso, bind IgE by their high-affinity IgE receptor. IL-5 activates Eos and may delay their apoptosis. Eos and MC generate additional cytokines and participate in the immunoregulatory process (not shown). Eos also generate TGF-β, which stimulates fibroblasts to produce extracellular matrix proteins (not shown). Eos may also damage EC by releasing cationic proteins and reactive oxygen species (not shown).
Eosinophil peroxidase have cytotoxic effects, which explains (at least partially) the death of epithelial cells associated with EoE. Eosinophil-mediated epithelial damage can also be explained by toxic hydrogen peroxide and halide acids generated by eosinophil peroxidase as well as reactive oxygen species produced as a consequence of NADPH oxidase activation. Clearly, besides their role as effector cells, eosinophils may contribute to EoE pathogenesis by their capacity to participate in immunoregulatory processes [26]. Whether eosinophils generate extracellular DNA traps [30–32] in EoE patients remains an open question.

Conclusions

EoE is a chronic Th2-type inflammatory disease. It has become increasingly clear that there is a significant allergic predisposition in the EoE population, with the majority of the patients having concurrent allergic rhinitis, asthma, eczema, and/or a history of atopy [11]. Based on its pathogenesis, it is likely that EoE represents a new manifestation of atopy.

References

