Antibiotic Resistance and Detection of the Most Common Mechanism of Resistance (MLSB) of Opportunistic Corynebacterium

Alina Olender

Department of Medical Microbiology, Medical University of Lublin, Lublin, Poland

Key Words
Antibiotic resistance · Colonization · Corynebacterium · erm X · Infections · Multidrug resistance · MLSB detection · Nose colonization

Abstract

Background: Determination of antibiotic resistance of opportunistic Corynebacterium colonizing the nose that cause infections and evaluation of the applicability of a simple method for detecting the most common constitutive-type resistance to macrolides, lincosamides and streptogramin B (MLSB). Methods: 70 isolates colonizing the nose and 70 clinical isolates of various infection sites were used and identified using APICoryne and 16S rRNA. Minimal inhibitory concentrations (MICs) were determined (Etest) for 12 antibiotics. MLSB was defined based on MIC, a simple method using two disks (erythromycin/clindamycin) and detection of the gene erm X (PCR). Results: There was a high percentage – in both groups at the same level – of strains with MLSB (88.5% colonizing the nose and 87.1% causing infections). Detection with the phenotypic method MLSB was confirmed genetically (erm X) in all cases. In both groups, a high percentage of resistance was found to trimethoprim/sulfamethoxazole (in both groups 71.4%), chloramphenicol (nose 44.2%/infections 37.1%), tetracycline (28 and 45.7%) and β-lactam antibiotics (18.5 and up to 32.8%). Conclusion: Differences in antibiotic resistance were found between strains colonizing the respiratory tract and various infections. Isolates from infections more frequently exhibited multidrug resistance. The possibility of using a simple method was confirmed for MLSB detection, which can be applied to determine drug resistance in routine microbiological diagnostics of infections caused by opportunistic Corynebacterium.

© 2014 S. Karger AG, Basel

Introduction

The Corynebacterium genus includes a very large group of species with different phenotypic traits and pathogenic effects. More than 90 species belonging to the genus Corynebacterium have been described, and this number is increasing every year by newly identified or reclassified strains. Besides the most important species in terms of pathogenic activity, toxigenic C. diphtheriae, there are species in the physiological flora of the upper respiratory tract and skin, which, as opportunistic organisms in favorable circumstances, can also cause infection in humans. Due to their pathogenic significance, the most
important may be considered: C. jeikeium [1, 2], C. urealyticum [3], C. amyloludum [4], C. striatum [5–7], C. pseudodiphtheriticum [8, 9] and C. macginleyi [10]. Infections caused by the opportunistic species of the genus Corynebacterium include bacteremia, sepsis, endocarditis, valvular damage, meningitis and infections of the urinary tract, the respiratory tract, wounds, skin and eye. The potential for infections of endogenous nature points to the Corynebacterium spp. strains included in the physiological flora and their resistance to antibiotics. The extent to which they correlate with the strains isolated from infections is very important. One of the most serious problems related to treatment of infections caused by Corynebacterium spp. is the isolation of multidrug-resistant species from clinical material and the selection of the appropriate antibiotic therapy for a given type of infection. The information about high levels of antibiotic resistance (high values of minimal inhibitory concentration, MIC) are primarily based on the results of previous phenotypic studies on different species of Corynebacterium spp. [6, 11–13]. There are different mechanisms of resistance, which result from the expression of the responsible genes, e.g. resistance to tetracycline (the tetA, tetB and tetM genes) [14, 15] or fluoroquinolones (single or multiple mutations within gyrA subunit A) [16, 17], and resistance to macrolides, lincosamides and streptogramin B (MLSB) frequently occurs in opportunistic Corynebacterium spp. [18, 19].

The aim of this study was to analyze differences in antibiotic resistance between Corynebacterium strains from the upper respiratory tract (the nose), as a component of the physiological flora, and strains responsible for various opportunistic infections. The analysis paid special attention to the most common mechanism of resistance that occurs in both groups of strains examined. Another aim was to evaluate the application of simple phenotypic methods in the detection of the most common mechanism of resistance, which may be applicable in the routine microbiological diagnostics of infections caused by opportunistic Corynebacterium (coryneform).

Materials and Methods

Cultures and Identification

The two groups of strains used in this study (140 isolates of Gram-positive bacteria of the genus Corynebacterium in total) were obtained in 2008–2011. The first group of 70 strains was derived from cultures of nasal swabs from subjects in whom diagnostic microbiological testing was performed due to infection of the upper respiratory tract. The strains isolated were grown in monocolonies and showed abundant growth on the substrate. The other group examined consisted of 70 strains of Corynebacterium spp. isolated from clinical material from routine microbiological diagnostics of various infections. The clinical material came from a diverse group of patients, both inpatients and outpatients. The strains were isolated from wounds (n = 25), blood (n = 14), eye (n = 7), ear (n = 5), sputum (n = 4), pleural fluid (n = 3), urine (n = 3), vagina (n = 3), tracheostomy tube (n = 2), catheter insertion site (n = 1), dialysis fluid (n = 1), peritoneal fluid (1) and bronchial aspirate (n = 1).

Cultures were performed on Columbia agar base with 5% sheep blood (bioMérieux, Marcy l’Etoile, France). Incubation was carried out in aerobic conditions at 37°C for 24–48 h. After isolation, the strains were stored in cryovials (Microbank; PRO-LAB Diagnostics, Richmond Hill, Ont., Canada) at –20 and –70°C for further tests.

All strains were identified based on the phenotypic traits. Identification was carried out based on the morphological traits of colonies and microscopic features using the Gram stain method and sets of biochemical tests to identify species of the genus Corynebacterium (API Coryne combined with APIZYM and APINE; bioMérieux). The results were read using apiwel® (bioMérieux). The strains were subjected to genetic identification consisting of an analysis of the sequence of the encoding gene fragment 16S rRNA [20–22] (Laboratory of Sequences, DNA IBB PAN, oligo.pl) to validate the correctness of the identified species that caused problems in the phenotypic identification. Analysis of the results was performed based on the GenBank database using the BLAST program.

Determination of MICs

Determination of MIC (mg/l) values was performed using the Etest (bioMérieux) on Mueller-Hinton agar base with 5% sheep blood (bioMérieux) using an inoculum at a density of 1.0 on the McFarland scale. Incubation was carried out at 35°C in oxygen atmosphere or in 5% CO₂ – if it was necessary for a better growth of the test strain (not in the case of erythromycin and clindamycin, as suggested by the manufacturer) for 24–48 h. The interpretation of MIC values for benzylpenicillin, ceftiaxone, cefotaxime, clindamycin, erythromycin, imipenem, ciprofloxacin, vancomycin, tetracycline and trimethoprim/sulfamethoxazole was carried out in accordance with the recommendations for Corynebacterium spp. [23, 24]. Due to the lack of established criteria for the interpretation of teicoplanin and chloramphenicol, the recommendations of the Clinical and Laboratory Standards Institute for Staphylococcus aureus were used [25].

Resistance Mechanism to Macrolides, Lincosamides and Streptogramin B (MLSB) – The Double-Disk Method

The study was performed on Mueller-Hinton agar base with 5% sheep blood (bioMérieux) using an inoculum at a density of 1.0 on the McFarland scale. Disks with erythromycin (15 μg) and clindamycin (2 μg) (Becton Dickinson, Sparks, Md., USA) were placed at a distance of 26 mm. Incubation was carried out at 35°C in oxygen atmosphere. The interpretation of the zones of growth inhibition, read in millimeters, was performed for erythromycin and clindamycin in the same way as for staphylococci and streptococci [19, 25, 26]. S. aureus ATCC 29213 was used as the control strain.

On the basis of the results, presence of the phenotypic cross-resistance mechanism MLSB was determined for macrolides, lin-
cosamides and streptogramin B in all test strains. Lack of growth inhibition around the disk of erythromycin and clindamycin in both test distances was considered a positive result for the presence of the constitutive-type resistance MLSB.

Study of the Presence of the Gene erm X Using PCR in Strains with the Phenotypically Identified Resistance Mechanism MLSB

Bacterial DNA was obtained by heating a suspension of 2–3 colonies in 0.5 ml of sterile deionized water at 90 °C for 10 min followed by centrifugation at 15,000 g for 2 min. The resulting supernatant containing DNA was frozen at −20 °C and stored until analyzed. The negative control was sterile deionized water. PCR was performed using the following primers [19]: Crm1: GACACGGCCGTCACGAGCAT, Crm2: GGCGGCGAGCGACTTCC (Laboratory of Sequence, DNA IBB PAN, oligo.pl). The PCR amplification cycle included: 95 °C for 5 min, followed by 35 cycles at 95 °C for 1 min, 65 °C for 1 min, 72 °C for 2 min and 72 °C for 5 min. PCR products were electrophoretically separated in 1.5% agarose gel (Sigma, St. Louis, Mo., USA) in Tris-phosphate-EDTA buffer 1:10 (Sigma) containing 1 μg/μl ethidium bromide. The following markers were used for the sizes of PCR products: 250, 500, 750, 1,000 and 10,000 bp (GeneRuler Fermentas). The result was considered positive (erm X gene present) if a PCR product of 390 bp was obtained. The results of the gel image were archived using Kodak EDAS 290.

Results

C. pseudodiptheriticum (28/40%), *C. accolens* (11/15.7%) and *C. propinquum* (8/11.4%) were the most common isolates in the group of strains derived from the mucous membranes of the nose (table 1). It is worth noting that as many as 5 strains of *C. tuberculostearicum* were isolated from samples of infections; *C. pseudogenitalium*, which may be part of the physiological flora of urogenital organs, was also isolated from the nose.

In the second group of strains of *Corynebacterium* spp. (table 2) isolated from various human infections, the most common isolates in humans were *C. amycolatum* (21/30%), *C. striatum* (16/22.8%) and *C. jeikeium* (6/8.6%). Thirteen different species were isolated from the study material.

Ranges of MIC and MIC₅₀ and MIC₉₀ values for the antibiotics determined for the study strains are presented.
in tables 3 and 4. They are particularly high for macrolides and lincosamides (256 mg/l), and there are also highly susceptible isolates with MIC values of 0.064 and 0.125 mg/l. MIC values were particularly low in all strains for imipenem, which indicates a high efficiency of this antibiotic against Corynebacterium spp. Vancomycin and teicoplanin are the antibiotics to which all tested isolates were susceptible. MIC₅₀ and MIC₉₀ values were increased for almost all strains of Corynebacterium spp. for chloramphenicol (256 mg/l) and trimethoprim/sulfamethoxazole (32 mg/l). In case of strains isolated from infections, high resistance to tetracycline (45.7%) and benzylpenicillin (32.8%) was noted. Since certain strains (C. aurimucosum and C. accolens) were isolated from infections separately, the determined MIC values certainly do not characterize full resistance of these species to antibiotics (table 4). Special attention, due to their high resistance, should be paid to C. striatum and C. amycolatum, which are the most common isolates from infections, as well as strains of C. jeikeium and C. macgilneyi.

In both groups of strains isolated from the nose and infections, a high percentage of strains was also resistant to macrolides (erythromycin) and lincosamides (clindamycin), which indicates a frequent occurrence of cross-
Table 4. The MIC, MIC₅₀ and MIC₉₀ (ml/l) of the determined antibiotics for species of the genus Corynebacterium isolated from the nose and the material of various infection sites.

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Corynebacterium spp. isolated from the nose</th>
<th>Corynebacterium spp. isolated from the material of various infection sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pe</td>
<td>0.047 0.064 0.125 256</td>
<td>0.047 256 0.032 12.0 0.032 2.000 2000</td>
</tr>
<tr>
<td></td>
<td>MIC<sub>50</sub> 0.023 0.064 0.032 6.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MIC<sub>50</sub> 0.064 0.094 0.064 ≥256 ≥256 ≥256 0.125</td>
<td></td>
</tr>
<tr>
<td>Cefo</td>
<td>0.032 0.032 0.064 0.500</td>
<td>0.047 256 0.125 256 0.032 0.047 0.032 0.064 0.064 0.750</td>
</tr>
<tr>
<td></td>
<td>MIC<sub>50</sub> 0.023 0.032 0.047 0.094 0.064 0.032</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MIC<sub>50</sub> 0.064 0.032 0.250 0.094 0.125</td>
<td></td>
</tr>
<tr>
<td>Ceft</td>
<td>0.032 0.032 0.064 0.500</td>
<td>0.047 256 0.125 256 0.032 0.047 0.032 0.064 0.064 0.750</td>
</tr>
<tr>
<td></td>
<td>MIC<sub>50</sub> 0.023 0.032 0.047 0.094 0.064 0.032</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MIC<sub>50</sub> 0.064 0.032 0.250 0.094 0.125</td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td>0.500 ≥256 >256</td>
<td>0.750 256 0.150 0.750 0.064 8.000</td>
</tr>
<tr>
<td></td>
<td>MIC<sub>50</sub> 256 256 256 256 256 256 256 256</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MIC<sub>50</sub> ≥256 ≥256 ≥256 ≥256 ≥256 ≥256 ≥256 ≥256</td>
<td></td>
</tr>
<tr>
<td>Er</td>
<td>0.500 ≥256 >256</td>
<td>0.750 256 1.500 0.750 0.064 8.000</td>
</tr>
<tr>
<td></td>
<td>MIC<sub>50</sub> 256 256 256 256 256 256 256 256</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MIC<sub>50</sub> ≥256 ≥256 ≥256 ≥256 ≥256 ≥256 ≥256 ≥256</td>
<td></td>
</tr>
<tr>
<td>Im</td>
<td>0.004 0.012 0.012 0.006</td>
<td>0.064 0.250 0.060 0.012 0.125 0.094 0.094 0.064 0.125</td>
</tr>
<tr>
<td></td>
<td>MIC<sub>50</sub> 0.006 0.008 0.006 0.032 0.012 0.008</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MIC<sub>50</sub> 0.125 0.032 0.016 0.064 0.032 0.012</td>
<td></td>
</tr>
<tr>
<td>Cip</td>
<td>0.064 0.012 0.012 0.750</td>
<td>0.064 32.0 0.380 1.500 0.064 0.250</td>
</tr>
<tr>
<td></td>
<td>MIC<sub>50</sub> 0.064 0.250 0.064 0.250 0.380 0.750</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MIC<sub>50</sub> 0.075 0.380 0.250 0.380 0.750 0.750</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MIC<sub>50</sub> 0.125 0.380 0.190 0.094 0.190 0.064 6.000 0.190 0.064</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MIC<sub>50</sub> 0.125 0.380 0.190 0.094 0.190 0.064 6.000 0.190 0.064</td>
<td></td>
</tr>
</tbody>
</table>
Table 4 (continued)

<table>
<thead>
<tr>
<th>Pe</th>
<th>Benzylpenicillin</th>
<th>Cefo = cefotaxime</th>
<th>Ceft = ceftriaxone</th>
<th>Cl = clindamycin</th>
<th>Er = erythromycin</th>
<th>Im = imipenem</th>
<th>Cip = ciprofloxacin</th>
<th>Van = vancomycin</th>
<th>Tei = teicoplanin</th>
<th>Tet = tetracycline</th>
<th>Chl = chloramphenicol</th>
<th>T/S = trimethoprim/sulfamethoxazole</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIC</td>
<td>MIC<sub>50</sub></td>
<td>MIC<sub>90</sub></td>
<td>MIC</td>
<td>MIC<sub>50</sub></td>
<td>MIC<sub>90</sub></td>
<td>MIC</td>
<td>MIC<sub>50</sub></td>
<td>MIC<sub>90</sub></td>
<td>MIC</td>
<td>MIC<sub>50</sub></td>
<td>MIC<sub>90</sub></td>
<td>MIC</td>
</tr>
<tr>
<td>Corynebacterium spp. isolated from the nose</td>
<td></td>
</tr>
<tr>
<td>Van</td>
<td>0.250</td>
<td>0.380</td>
<td>0.380</td>
<td>0.125</td>
<td>0.75</td>
<td>0.064</td>
<td>0.032</td>
<td>0.075</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIC<sub>50</sub></td>
<td>0.125</td>
<td>0.500</td>
<td>0.125</td>
<td>0.750</td>
<td>1.000</td>
<td>0.250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIC<sub>90</sub></td>
<td>1.000</td>
<td>0.064</td>
<td>0.125</td>
<td>0.500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tei</td>
<td>3.000</td>
<td>4.000</td>
<td>4.000</td>
<td>0.250</td>
<td>4.000</td>
<td>2.000</td>
<td>0.750</td>
<td>0.125</td>
<td>4.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIC<sub>50</sub></td>
<td>0.500</td>
<td>2.000</td>
<td>0.190</td>
<td>4.000</td>
<td>4.000</td>
<td>0.500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIC<sub>90</sub></td>
<td>2.000</td>
<td>4.000</td>
<td>2.000</td>
<td>0.125</td>
<td>0.064</td>
<td>0.125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tet</td>
<td>1.500</td>
<td>2.000</td>
<td>1.500</td>
<td>0.664</td>
<td>256</td>
<td>0.064</td>
<td>8.000</td>
<td>0.064</td>
<td>4.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIC<sub>50</sub></td>
<td>0.064</td>
<td>0.064</td>
<td>0.500</td>
<td>0.125</td>
<td>1.500</td>
<td>0.250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIC<sub>90</sub></td>
<td>2.000</td>
<td>2.000</td>
<td>1.000</td>
<td>0.064</td>
<td>0.664</td>
<td>0.500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chl</td>
<td>1.500</td>
<td>>256</td>
<td>0.064</td>
<td>0.320</td>
<td>256</td>
<td>0.064</td>
<td>6.000</td>
<td>0.032</td>
<td>3.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIC<sub>50</sub></td>
<td>192</td>
<td>32.0</td>
<td>3.000</td>
<td>>256</td>
<td>0.320</td>
<td>0.064</td>
<td>0.500</td>
<td>0.064</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIC<sub>90</sub></td>
<td>4.000</td>
<td>3.000</td>
<td>16.0</td>
<td>>256</td>
<td>3.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T/S</td>
<td>2.000</td>
<td>>32</td>
<td>0.064</td>
<td>3.20</td>
<td>3.20</td>
<td>1.0</td>
<td>3.20</td>
<td>0.064</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIC<sub>50</sub></td>
<td>32.0</td>
<td>6.000</td>
<td>32.0</td>
<td>32.0</td>
<td>0.750</td>
<td>0.750</td>
<td>32.0</td>
<td>3.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIC<sub>90</sub></td>
<td>32.0</td>
<td>32.0</td>
<td>1.500</td>
<td>32.0</td>
<td>3.20</td>
<td>4.000</td>
<td>32.0</td>
<td>3.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table Notes:
- **C. pseudodiphtheriticum** (n = 28)
- **C. accolens** (n = 11)
- **C. propinquum** (n = 8)
- **C. amycolatum** (n = 7)
- **C. striatum** (n = 7)
- **C. tuberculostearicum** (n = 5)
- **C. macginleyi** (n = 2)
- **C. group F1** (n = 1)
- **C. pseudogenitalium** (n = 1)
- **C. amycolatum** (n = 21)
- **C. striatum** (n = 16)
- **C. jeikeium** (n = 6)
- **C. pseudodiphtheriticum** (n = 5)
- **C. group G** (n = 5)
- **C. propinquum** (n = 4)
- **C. urealyticum** (n = 3)
- **C. afermentans** (n = 2)
- **C. glucuronolyticum** (n = 2)
- **C. group F1** (n = 2)
- **C. macginleyi** (n = 2)
- **C. accolens** (n = 1)
- **C. aurimucosum** (n = 1)

Table Legend:
- **MIC:** Minimum Inhibitory Concentration
- **MIC₅₀:** MIC at which 50% of isolates are inhibited
- **MIC₉₀:** MIC at which 90% of isolates are inhibited
- **Pe = Benzylpenicillin; Cefo = cefotaxime; Ceft = ceftriaxone; Cl = clindamycin; Er = erythromycin; Im = imipenem; Cip = ciprofloxacin; Van = vancomycin; Tei = teicoplanin; Tet = tetracycline; Chl = chloramphenicol; T/S = trimethoprim/sulfamethoxazole.**
resistant MLSB (tables 3, 4). It is noteworthy (fig. 1) that the percentage of the antibiotic-resistant strains is almost the same (difference: 1 isolate) for the isolates from the nasal mucous membranes (88.5%) and the isolates from the various infections (87.1%), and there is a high level of resistance in both study groups (71.4%) to trimethoprim/sulfamethoxazole. Chloramphenicol was another antibiotic to which the isolates showed increased resistance. The resistance of strains derived from the nasal mucous membranes was 44.2%, while it was 37.1% in those isolated from infections. With respect to the other antibiotic groups, resistance turned out to be much higher for the isolates derived from infections. One example is tetracycline, to which resistance of the strains isolated from infections amounted to 45.7%, while resistance was only 2.8% in those from the nose. This is confirmed by MIC values (table 4).

Corynebacterium spp. isolated from the nose was resistant to β-lactam antibiotics (18.5%), while β-lactam resistance of those from infections ranged between 18.5 and 32.8%.

In Corynebacterium spp. isolated from the nose, the highest multiresistance was usually reported for four antibiotics (38.5%) simultaneously in one isolate (fig. 2). These are mainly clindamycin, erythromycin, chloramphenicol and trimethoprim/sulfamethoxazole, and the highest resistance was to six antibiotics (penicillin, clindamycin, erythromycin, tetracycline, chloramphenicol and trimethoprim/sulfamethoxazole).

Detection of cross-resistance to macrolides, lincosamides and streptogramin B (MLSB) using the double-disk method, which is applied for staphylococci and streptococci, was confirmed in all strains, in which the determined MIC values showed resistance to clindamycin and erythromycin. In Corynebacterium spp. from the nose, the MLSB mechanism occurred in 62 strains (88.5%) versus 61 strains (87.1%) in isolates from infections. In all cases, the constitutive-type resistance mechanism was found.

The strains of Corynebacterium spp. from both groups for which the MIC values for clindamycin and erythromycin showed simultaneous resistance to these two antibiotics were used to detect the presence of gene erm (X) by PCR. Finally, MLSB resistance (lack of the gene erm X) was not found in strains with MIC values similar to moderately susceptible. The gene erm X was detected in all strains with the constitutive-type mechanism MLSB by the double-disk method with clindamycin and erythromycin (fig. 3). A summary of the results of the three methods of MLSB mechanism detection is presented in table 5.

In the opportunistic infections analyzed, more and more attention is attracted by bacteria of the genus Corynebacterium, which were previously known as diphtheroids but are presently referred to as coryneform strains. These club-like Gram-positive bacteria are commonly found on mucous membranes and the skin, and can cause serious life-threatening infections, even leading to death.
of the patient. Undoubtedly, a very important additional problem associated with the occurrence of infections caused by this group of microorganisms is the emergence of coryneform strains in recent years which are simultaneously resistant to several classes of antibiotics as well as the emergence of new multiresistant species such as \(C. \) resistens [27].

In this study, including 140 strains of \(\text{Corynebacterium} \) spp. derived from the physiological flora of the nose and a variety of infections in humans, thanks to the use of both methods of identification, phenotypic and genotypic identification, it was possible to finally determine the species to which the isolates belonged. Thus, based on the morphological and biochemical traits, identification of as many as 30 strains proved to be insufficient, and only the application of the genetic method allowed the correct identification of the strains.

The strains of \(\text{Corynebacterium} \) that cause infections may come from the patient’s environment or his physiological flora. The mucous membranes of the nose are a significant, potential source of endogenous infections. In \(\text{Corynebacterium} \) spp. derived from the nose of our outpatients, the highest percentage of strains found was \(C. \) pseudodiphtheriticum, whereas in the group of isolates obtained from infections, the most frequent strains were \(C. \) striatum and \(C. \) amycolatum.

The presence of such a large number of \(C. \) pseudodiphtheriticum is undoubtedly connected with the involvement of these species in respiratory tract infections. They can cause pneumonia [28], bronchitis [29], especially in immunodeficient patients, and respiratory tract infections in children with cystic fibrosis of the pancreas [30]. In hospitalized patients, they are sometimes the cause of complications of endotracheal intubation leading to lower respiratory tract infections.

The results of this study on strains of \(\text{Corynebacterium} \) derived from a variety of infections confirmed previous reports in the literature on relationships between \(C. \) pseudodiphtheriticum and respiratory tract infections. In the group studied, \(C. \) pseudodiphtheriticum was isolated from the sputum of patients with pneumonia, bronchial aspirates and urine, which also indicates the possibility of urinary tract infections, as reported by other authors.

The second most common species isolated from the nose was \(C. \) accolens, some strains of which required genotypic identification in this study due to the difficulty in identifying the phenotype. Although \(C. \) accolens is a component of the physiological flora of the nose, it was described as a cause of breast abscess [31], endocarditis, cardiovalvulitis [32] and osteomyelitis [33]. A small proportion of these species in infections is confirmed by own studies. They were isolated only once, from the otitis media, and the location of the infection may result

Table 5. Summary results of the determination of MLSB resistance using the phenotypic method (the double-disk test with 15 μg erythromycin and 2 μg clindamycin), MIC (Etest) and gene \(\text{erm} \) detection by the PCR method based on 80 strains of \(\text{Corynebacterium} \) from the nose and various other infection sites

<table>
<thead>
<tr>
<th>Species (strain numbers and their origin)</th>
<th>MLSB – double-disk test</th>
<th>MIC (Etest)</th>
<th>Presence of gene (\text{erm}) X by PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pos. neg.</td>
<td>pos. neg.</td>
<td>pos. neg.</td>
</tr>
<tr>
<td>(C.) pseudodiphtheriticum (29: nose, 25; urine, 1; sputum, 2; BA, 1)</td>
<td>27 2</td>
<td>27 2</td>
<td>27 2</td>
</tr>
<tr>
<td>(C.) accolens (11: nose, 10; ear, 1)</td>
<td>9 2</td>
<td>9 2</td>
<td>9 2</td>
</tr>
<tr>
<td>(C.) amycolatum (10: nose, 5; blood, 3; wound, 2)</td>
<td>9 1</td>
<td>9 1</td>
<td>9 1</td>
</tr>
<tr>
<td>(C.) striatum (10: nose, 6; wound, 3; blood, 1)</td>
<td>8 2</td>
<td>8 2</td>
<td>8 2</td>
</tr>
<tr>
<td>(C.) propinquum (6: nose, 5; sputum, 1)</td>
<td>5 1</td>
<td>5 1</td>
<td>5 1</td>
</tr>
<tr>
<td>(C.) tuberculosis (5: nose)</td>
<td>5 0</td>
<td>5 0</td>
<td>5 0</td>
</tr>
<tr>
<td>(C.) jeikeium (3: blood, 2; wound, 1)</td>
<td>2 1</td>
<td>2 1</td>
<td>2 1</td>
</tr>
<tr>
<td>(C.) afermentans (2: ear, 1; dialysis fluid, 1)</td>
<td>2 0</td>
<td>2 0</td>
<td>2 0</td>
</tr>
<tr>
<td>(C.) aurimucosum (1: eye conjunctiva)</td>
<td>1 0</td>
<td>1 0</td>
<td>1 0</td>
</tr>
<tr>
<td>(C.) macginleyi (1: nose)</td>
<td>0 1</td>
<td>0 1</td>
<td>0 1</td>
</tr>
<tr>
<td>(C.) pseudogenitalium (1: nose)</td>
<td>1 0</td>
<td>1 0</td>
<td>1 0</td>
</tr>
<tr>
<td>(C.) urealyticum (1: peritoneal fluid)</td>
<td>1 0</td>
<td>1 0</td>
<td>1 0</td>
</tr>
</tbody>
</table>

pos. = Positive MLSB; neg. = negative MLSB; BA = bronchial aspirate.
from their common occurrence on nasal mucous membranes.

C. propinquum is the next species in terms of the frequency of occurrence in the group tested. It is a common commensal of the nasopharynx and may cause infections of the respiratory tract, mostly in hospitalized patients [34]. The association of the colonization site with the location of the infection is also confirmed in this study. *C. propinquum* was a cause of pneumonia, otitis media, pleurisy and also caused conjunctivitis in the group of infections analyzed. Of note, among the strains isolated from the nose, *C. tuberculostearicum* and *C. pseudogenitalium* are rare. The presence of both species was confirmed genetically.

Other species such as *C. amycolatum* and *C. striatum*, which were isolated from the nose, belong to opportunistic *Corynebacterium*, which frequently cause infections in humans. Their presence indicates a possible source of infection derived from their colonization site, but the large number of cases of infections caused by *C. amycolatum* and *C. striatum* suggests that the nasal mucous membranes are not the most important source of their origin predisposing to infections. These strains can also come from the physiological flora of the skin or from the environment of the patient, and the nature of the infection may be exogenous.

In the present work, the second group under study included strains of *Corynebacterium* spp. isolated from clinical material, which came from infections of different locations in patients. This variety of infection sites from which the opportunistic *Corynebacterium* spp. were obtained confirms the high adaptability of these little virulent bacteria to different environments in the human body. It also indicates the possibility of more frequent and more diverse infections caused by microorganisms derived from the natural physiological flora of humans.

In the group of strains isolated from infections, *C. striatum* and *C. amycolatum* as well as *C. jeikeium* were the most frequent. In general, in this study group, a great diversity of species was found. Some of them were the cause of infections localized in different sites, such as *C. striatum* and *C. amycolatum*, whereas others occurred individually, e.g. *C. accolens* or *C. aurimucosum*, which may indicate their occasional contribution to opportunistic infections, although *C. accolens*, for example, was isolated in large quantities from nasal mucous membranes.

The most common strain, *C. striatum*, is an important opportunistic pathogen that may show multiresistance [35]. This observation is confirmed by the disturbing news about the discovery of a multidrug-resistant clone of *C. striatum* in Italy, which was isolated from infections in long-term inpatients [5]. In agreement with this study, its contribution to infections of the blood [36], wounds [35, 37] and the respiratory tract [38] was confirmed. The case reports indicate the special incidence of this type of infection in long-term hospitalized patients.

In this study, this relationship was not observed. The material from which *C. striatum* was isolated had been selected at random and came from a diverse group of patients who were not hospitalized for a long period. These infection-causing species should not only be associated with patients hospitalized for a long time. However, the occurrence of antibiotic-resistant *C. striatum* in the hospital environment has been confirmed by studies of Campanile et al. [5].

In the present study, in order to be able to characterize and compare the antibiotic susceptibility of species of different origin (from the nose and from clinically confirmed infections), MIC values were determined for 12 antibiotics and chemotherapeutics by the method recommended for this group of microorganisms (Etest) [24, 25]. Application of the testing method using Etests for the determination of antibiotic susceptibility of *Corynebacterium* spp. was indicated in works of many authors [16, 17, 39]. It is particularly useful and reliable for bacteria of *Corynebacterium* spp., which also include strains with lipophilic properties and those requiring substances that enrich the medium, such as Tween 80. On the other hand, using the Etest enables extension of the time of incubation in such cases, resulting in good comparability and reliability of the results for all *Corynebacterium* spp. regardless of their lipophilic properties.

In this study, the main difference between the groups of *Corynebacterium* analyzed was the higher susceptibility to antibiotics of strains colonizing the nasal mucous membranes, particularly with respect to β-lactam antibiotics.

These observations were confirmed by the analysis of drug resistance, e.g. strains of *C. macginleyi*, which were isolated in both study groups. A significantly higher resistance was shown by the strains isolated from infections, whereas other authors stress their general susceptibility to antibiotics. For example, Espinola et al. [40] studied *C. macginleyi* isolated from the skin, which caused conjunctivitis, and found that among 33 strains, resistance occurred only in 1 isolate to ciprofloxacin and in 2 to tetracyclines. All strains were susceptible to the other antibiotics. Unfortunately, resistance to macrolides and lincosamides was not determined, i.e. antibiotics to which a very high resistance was found in this study.
Examination of *Corynebacterium* spp. derived from the nasal mucous membranes revealed very important information: the general susceptibility to vancomycin and teicoplanin, as well as ciprofloxacin, imipenem and cephalosporins. A special susceptibility to vancomycin is of great importance when choosing the antibiotic therapy. Vancomycin is the drug of choice for invasive infections caused by opportunistic *Corynebacterium*. Susceptibility to this antibiotic results in its high efficiency in the treatment of bacteremia [41, 42].

Ghide et al. [41], analyzing 98 patients who experienced *Corynebacterium* spp. infection, found that 94% of them were associated with the presence of vascular catheters, and the vancomycin therapy adopted in 64% of patients showed a positive effect on recovery without recurrence of fever. A major problem in the treatment of infections caused by opportunistic *Corynebacterium* spp. is the occurrence of multidrug resistance. It is also of importance for the antibiotic treatment of *S. aureus* infections [43].

The analysis of two groups of *Corynebacterium* showed significant differences in multiresistance to antibiotics. Among the isolates from the nose, none of the strains was simultaneously resistant to more than 6 classes of antibiotics, including erythromycin, clindamycin, chloramphenicol and trimethoprim/sulfamethoxazole. The results indicate that, although these bacteria are components of the physiological flora, they are not as commonly susceptible to antibiotics as one would expect. The use of antibiotics in patients with different types of infections may also affect saprophytic bacteria. This phenomenon is well known and may lead to the selection of resistant strains. Therefore, analysis of these processes, and the level at which they occur in the different groups of microorganisms, e.g. opportunistic *Corynebacterium*, is an important element in monitoring highly resistant strains derived from the saprophytic flora, particularly those which are simultaneously resistant to several antibiotics.

In the group of strains causing infections, the occurrence of multidrug resistance was observed in almost 20% of the isolates. Very important information is that the multidrug-resistant *Corynebacterium* strains still remained susceptible to vancomycin and teicoplanin, as described by other authors [13].

In the present study, the following species showed resistance to several groups of antibiotics: *C. striatum*, *C. amycolatum*, *C. jeikeium* and, which is particularly noteworthy, a rarely isolated species of *C. glucuronolyticum* in cases of bacteremia and secretions from the tracheostomy tube, i.e. probably derived from the hospital environment.

The results of this study confirm previous studies by other authors on the occurrence of multidrug-resistant strains among *C. striatum* [6], *C. amycolatum* [17, 44] and *C. jeikeium* [45].

This work and analyses stress that simultaneous resistance to macrolides (erythromycin) and lincosamides (clindamycin) occurred at a very high and equal level in both test groups, which indicates the presence of the cross-resistance mechanism MLSB. In addition, there was no significant difference between both groups, i.e. isolates from the nose and infections, in the number of strains with this mechanism of resistance.

A high level of resistance to macrolides and lincosamides in *Corynebacterium* is also reported by Gómez-Garcés et al. [13] and Fernandez-Roblas et al. [39].

Resistance within the MLSB mechanism is based on the production of rRNA methylase, which causes double methylation of adenine in 23S rRNA and results in a change in the structure of the antibiotic binding site. The gene *erm* encodes this enzyme [46], which belongs to class X for *Corynebacterium* [18]. Moreover, a case of isolation of *Corynebacterium* group A with the gene *erm* class B has been described [47].

The gene *erm* X was detected in different species of the genus *Corynebacterium*: *C. diphtheriae* [48], *C. jeikeium* [19], *C. xerosis* [19], *C. striatum* [5] and *C. pseudodiphtheriticum*.

The gene *erm* X may be located on plasmid pNG2 [49] within the transposon Tn5432 on R plasmid pTP10 [50] and on the chromosome [14].

It has been reported that multidrug resistance found in *Corynebacterium* spp. may be associated with the horizontal transfer of resistance genes with participation of strains of bacteria unrelated in terms of species and with displacement of the insertion sequence IS1249 and insertion and removal of Tn5432 [18]. It may be confirmed by the presence of Tn5432, for example, in *Propionibacterium acnes*, *P. avidum* and *P. granulosum* inhabiting the skin [50, 51]. Own research related to opportunistic species of *Corynebacterium* showed that antibiotic resistance was significantly higher than that described for the potentially pathogenic, toxigenic and non-toxigenic *C. diptheriae*. Zasada et al. [52], analyzing a clone of non-toxigenic *C. diptheriae* occurring in Poland, pointed out that all of the test strains were susceptible to antibiotics. The MLSB mechanism, which is so popular among the opportunistic strains, was absent in all of the 19 strains studied. Gladin et al. [53] provided information about 11.5% of the *C.*
Conclusion

The most common mechanism of resistance in strains of *Corynebacterium* isolated from the mucous membranes of the nose and various infections is the constitutive-type MLSB. In the antibiotic treatment of infections caused by opportunistic species of the genus *Corynebacterium*, a low therapeutic efficiency of macrolides, lincosamides and streptogramin B should be taken into account due to the high percentage of the constitutive-type resistance mechanism MLSB.
The concordance of the phenotypic identification with genotypic studies (presence of the gene \textit{erm X}) confirms the applicability of a simple phenotypic method of disk diffusion (erythromycin 15 μg and clindamycin 2 μg) to detect the constitutive-type MLSB in \textit{Corynebacterium}, the method used for staphylococci and streptococci, which may be applicable for the determination of drug resistance in routine microbiological diagnostics of infections caused by opportunistic \textit{Corynebacterium} (coryneform).

Acknowledgments

I would like to express my gratitude to Dr. Marcin Niemecwicz of the Military Institute of Hygiene and Epidemiology, Biological Threat Identification and Countermeasure Center, Pulawy, Poland, for his help in conducting the genetic research.

Disclosure Statement

The author has nothing to disclose.

References

