Vitamin D and Its Effects on Glucose Homeostasis, Cardiovascular Function and Immune Function

N. El-Fakhri a, H. McDevitt a, b, M.G. Shaikh a, C. Halsey c, S.F. Ahmed a

a School of Medicine, University of Glasgow, Royal Hospital for Sick Children, b Neonatal Unit, Southern General Hospital, and c Institute for Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK

Key Words
Vitamin D · Extraskeletal benefits · Immune function · Cardiovascular function · Glucose homeostasis

Abstract
In recent years there has been increasing interest in the non-skeletal effects of vitamin D. It has been suggested that vitamin D deficiency may influence the development of diabetes, cardiovascular dysfunction and autoimmune diseases. This review focuses on the current knowledge of the effects of vitamin D and its deficiency on cardiovascular function, glucose homeostasis and immune function, with a particular focus on children. Although, there is good evidence to show that there is an association between vitamin D deficiency and an abnormality of the above systems, there is little evidence to show that vitamin D supplementation leads to an improvement in function, especially in childhood.

Vitamin D Overview
Most plants and animals that are exposed to sunlight have the ability to produce vitamin D. In humans, the active vitamin D metabolite, 1,25-dihydroxyvitamin D (1,25(OH)₂D₃), has been well recognized for its role in calcium and phosphate homeostasis [1]. However, intensive research over the last two decades has indicated that vitamin D may also be a critical modulator of several non-skeletal systems and related diseases. Vitamin D refers to two biological precursors – ergocalciferol (D₂) and cholecalciferol (D₃). Vitamin D₃ constitutes around 80–90% of the circulating metabolites and is synthesized mainly in the skin by the action of ultraviolet (UV) light (280–315 nm). Vitamin D₃ can also be obtained exogenously from animal sources such as fish oils or fortified dairy products and vitamin supplements. Sun-dried mushrooms, UV-B irradiation of the yeast sterol ergosterol, as well as vitamin supplements are considered as main sources of vitamin D₂ [2]. Vitamin D (D₂, D₃) has no biological activity without a two-step hydroxylation process. The first step, in the liver, requires P450 enzymes such as CYP2R1 and CYP27A1 (25-hydroxylases) to form the major circulating form 25(OH)D. The second step, in the kidneys, requires the P450 enzyme, CYP27B1 (1α,25-hydroxylase) to form the main active metabolite – 1,25(OH)₂D or calcitriol. The second hydroxylation reaction is stimulated mainly by parathyroid hormone (PTH), and inhibited by calcium, phosphate and fibroblast growth factor-23 (FGF-23) [3]. The biological action of 1,25(OH)₂D is mediated through the vitamin D receptors (VDRs) and this receptor as well as CYP27B1 are expressed widely in several tissues [4] (fig. 1).

Vitamin D deficiency has been defined by the Institute of Medicine (IOM) as a measured serum 25(OH)D of <30 nmol/l (12 ng/ml), vitamin D insufficiency when the se-
rum 25(OH)D is 30 to <50 nmol/l (12 to <20 ng/ml) and vitamin D sufficiency is defined at 25(OH)D levels equal to 50 nmol/l (20 ng/ml) [5]. There are a number of guidelines which have been published over the last decade to evaluate, manage and prevent vitamin D deficiency [6–8]. However, there is little consensus on the threshold which reflects biological vitamin D sufficiency at the end-organ level. In addition, there is substantial uncertainty about the extraskeletal benefits of vitamin D supplementation, especially in those who have relatively mild vitamin D deficiency.
deficiency [6, 9]. In this review, PubMed and the Web of Knowledge were used to identify studies that explored a link between vitamin D, glucose homeostasis and cardiovascular and immune function in children. Studies conducted within the last 7 years, which involved large pediatric samples and those reported in English, were selected and are summarized in tables 1–3 as appropriate.

Link between Vitamin D and Glucose Homeostasis – Putative Mechanisms

Evidence for an association between vitamin D and glucose homeostasis was first raised in reports of lower serum 1,25(OH)D level in diabetic rats compared to the control animals, and restoration of 1,25(OH)D to a normal level after insulin treatment [10]. Coexisting hypovitaminosis D and abnormal glucose metabolism has also been reported in patients with type 2 diabetes mellitus (T2DM) compared to healthy controls [11] and a possible link with vitamin D was also raised when a seasonal variation in plasma glucose and insulin was observed in normal individuals [12].

There were several suggested biological mechanisms by which vitamin D may contribute to the development of T2DM. This evidence includes the presence of VDRs and the expression of 1α-hydroxylase enzymes in the pancreatic β cell along with the existence of a vitamin D response element in the human insulin gene promoter [13–15]. In accordance with this finding, a significant

Table 1. Summary of studies reporting association between 25(OH)D and glucose homeostasis in fasted state (boys and girls)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Age, years</th>
<th>BMI n Method</th>
<th>25(OH)D, nmol/l</th>
<th>Association with glucose homeostasis</th>
<th>Adjusted for variable</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reinehr et al. [36]</td>
<td>12.1±2.4</td>
<td>27.7±3.8 133 glucose, insulin</td>
<td>50</td>
<td>no</td>
<td>BMI</td>
<td>longitudinal study (1 year)</td>
</tr>
<tr>
<td>Smotkin-Tangorra et al. [37]</td>
<td>12.9±5.5</td>
<td>32.3±6.4 217 glucose, insulin</td>
<td>55.2% <50, 44.8% ≥50</td>
<td>no</td>
<td>no</td>
<td>retrospective study</td>
</tr>
<tr>
<td>Delvin et al. [155]</td>
<td>9, 13, 16</td>
<td>20.1±4.2 (boys), 20.4±4.5 (girls)</td>
<td>45.9±13 (boys), 45.9±12.2 (girls)</td>
<td>yes</td>
<td>age, sex, BMI, smoking, income, activity</td>
<td>–</td>
</tr>
<tr>
<td>Ford et al. [156]</td>
<td>12–17 (range)</td>
<td>– 1,941 glucose, insulin, HbA1C</td>
<td>59</td>
<td>yes</td>
<td>age, sex, BMI, ethnicity, activity vitamin intake, HDL</td>
<td>association with insulin resistance in selected subgroups</td>
</tr>
<tr>
<td>Kelly et al. [157]</td>
<td>11±4</td>
<td>2.1 (–1.2, 4.1) (median (min, max)) 85 glucose, insulin, HbA1C</td>
<td>59±32</td>
<td>yes</td>
<td>age, sex, season, ethnicity, BMI, puberty</td>
<td>correlation between HOMA and race, sex, season disappears after adjustment to puberty and BMI-Z</td>
</tr>
<tr>
<td>Olson et al. [39]</td>
<td>6–16 (range)</td>
<td>99.2 (percentile for age) 411 glucose, insulin, OGTT, HbA1C</td>
<td>49±17.8</td>
<td>yes</td>
<td>age, BMI</td>
<td>correlation exists only after adjustment; no correlation with Hba1C</td>
</tr>
<tr>
<td>Roth et al. [40]</td>
<td>11.9±2.7</td>
<td>SDS-BMI; 20% (non-obese), 80% (obese) 156 glucose, insulin, HbA1C</td>
<td>39.4±6.6</td>
<td>yes</td>
<td>age, sex, BMI</td>
<td>no impact of adiposity on study result</td>
</tr>
<tr>
<td>Poomthavorn et al. [38]</td>
<td>11.2±2.6</td>
<td>28.6±4.8 150 OGTT (obese), glucose (non-obese), insulin</td>
<td>70.4</td>
<td>no</td>
<td>no</td>
<td>subjected to selection bias as recruited from obesity clinic</td>
</tr>
<tr>
<td>Nsiah-Kumi et al. [41]</td>
<td>10.8±0.3</td>
<td>77.0±1.7 (percentile for age and sex) 198 glucose, insulin, 2 h blood glucose</td>
<td>42.4 (16.9, 99.8) (median (min, max))</td>
<td>yes</td>
<td>BMI</td>
<td>–</td>
</tr>
</tbody>
</table>

OGTT = Oral glucose tolerance test; HbA1C = glycosylated haemoglobin; BMI = body mass index; BMI-SDS = body mass index-standard deviation score. Data are shown as mean (SD), unless indicated otherwise.
reduction in the insulin secretion in VDR mutant mice has been observed [16] and the human insulin gene has been shown to be transcriptionally activated by 1,25(OH)D\textsubscript{3} [17]. Vitamin D may influence insulin secretion indirectly through its role in the regulation of calcium flux through the cell membrane combined with its role in the synthesis and regulation of calbindin, a vitamin D-dependent Ca-binding protein in pancreatic β cells [18]. Vitamin D may also protect β cells from fatal immune attacks, or programmed cell death either directly or through its effect on various components of innate and adaptive immune system at different levels (as discussed later). It has been reported that 1,25(OH)D\textsubscript{3} may counteract apoptotic pathways and the inflammatory effect induced by cytokines through inactivation of NF-κB antiapoptotic protein and suppression of Fas receptor expression [19, 20].

Another possible mechanism explaining the involvement of vitamin D in the pathogenesis of T2DM is the role of hypovitaminosis D in enhancing insulin resistance at the target tissues [21, 22]. The presence of the VDR in extraskeletal target sites, such as skeletal muscle, together with the upregulation of insulin receptors (INS-R) after 1,25-hydroxyvitamin D\textsubscript{3} treatment appears to support this hypothesis [23]. Elevated PTH has also been suggested as a modulator for both insulin sensitivity and secretion status by affecting glucose uptake and inhibiting insulin transport signalling in the target tissues primarily by increasing intracellular calcium concentration [24]. Chronic inflammation may worsen insulin resistance and vitamin D may influence the inflammatory reaction through several mechanisms including modulation of the release of inflammatory cytokines such as tumour necrosis factor-α (TNF-α), reg-

Table 2. Summary of studies reporting association between 25(OH)D and cardiovascular (CV) risk factors in children (boys and girls)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Age, years</th>
<th>BMI</th>
<th>n</th>
<th>Outcome assessed</th>
<th>25(OH)D, nmol/l</th>
<th>Association with CV risk factors</th>
<th>Adjusted for variable</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smotkin-Tangorra et al. [37]</td>
<td>12.9±5.5</td>
<td>32.3±6.4</td>
<td>217</td>
<td>BP, lipids</td>
<td>55.2% <50, 44.8% ≥50</td>
<td>yes</td>
<td>no</td>
<td>vitamin D insufficiency associated with 1BMI, 1SBP, 1HDL-C</td>
</tr>
<tr>
<td>Reis et al. [82]</td>
<td>12–19</td>
<td>17.6 (≥95th percentile)</td>
<td>3,528</td>
<td>BP, lipids</td>
<td>61.9</td>
<td>yes</td>
<td>age, gender, race, income, activity, BMI</td>
<td>positive association with BP even after adjustment</td>
</tr>
<tr>
<td>Delvin et al. [155]</td>
<td>9, 13, 16</td>
<td>20.1±4.2 (boys), 20.4±4.5 (girls)</td>
<td>1,745</td>
<td>lipids</td>
<td>45.9±12.2 (boys), 45.9±13 (girls)</td>
<td>yes</td>
<td>age, sex, BMI, smoking, income, activity</td>
<td>positive association only present in girls</td>
</tr>
<tr>
<td>Dong et al. [91]</td>
<td>16.3±1.4</td>
<td>61.6±33.4 (percentile)</td>
<td>23 (study) 21 (control)</td>
<td>BP, adiposity, arterial stiffness</td>
<td>33.4</td>
<td>yes</td>
<td>age, sex</td>
<td>16-week randomized control trial of 2,000 IU daily 25(OH)D supplementation</td>
</tr>
<tr>
<td>Pacifico et al. [83]</td>
<td>11.5 (lowest), 11.2 (middle), 11 (highest)</td>
<td>24 (lowest), 22 (middle), 21 (highest)</td>
<td>452</td>
<td>BP, lipids, endothelial dysfunction</td>
<td>29.9 (lowest), 54.9 (middle), 89.8 (highest) (median)</td>
<td>yes</td>
<td>age, sex, Tanner stage, BMI</td>
<td>data divided according to serum 25(OH)D tertiles; an association with BP and lipids</td>
</tr>
<tr>
<td>Patange et al. [158]</td>
<td>14.7±2.6</td>
<td>23.6±7.5</td>
<td>34</td>
<td>arterial compliance, left ventricular mass, diastolic function</td>
<td>38.21±23.41</td>
<td>yes</td>
<td>–</td>
<td>subjects had chronic renal disease; vitamin D deficiency associated with ↑ left ventricular mass and diastolic dysfunction</td>
</tr>
<tr>
<td>Nsiah-Kumi et al. [41]</td>
<td>10.8±0.3</td>
<td>77.0±1.7 (percentile for age and sex)</td>
<td>198</td>
<td>BP, lipids, hsCRP</td>
<td>42.4 (16.9, 99.8) (median (min, max))</td>
<td>yes</td>
<td>BMI</td>
<td>–</td>
</tr>
</tbody>
</table>

BMI = Body mass index; BP = blood pressure; hsCRP = high-sensitivity C-reactive protein. Data are shown as mean (SD), unless indicated otherwise.
ulation of the activity of NF-κB, regulation of genes encoding pro-inflammatory cytokines and downregulation of Toll-like receptor (TLR)2 and TLR4 expression [25–27]. Figure 2 illustrates the putative role of vitamin D on insulin synthesis, release and β-cell function.

Link between Vitamin D and Glucose Homeostasis – Evidence from Observational Studies

In a cross-sectional study, Orwoll et al. [28] reported no relationship between serum 25(OH)D, fasting or post-challenge glucose and insulin secretion. However, the indirect method for measuring insulin level and unadjusted results for confounders may have had an impact on the study outcome. A positive association between 25(OH)D and insulin secretion has been reported in both glucose-intolerant East London women of South Asian origin [29] and healthy Caucasian elderly men [30]. These studies were performed using an oral glucose tolerance test and have been further supported by other studies which used a hyperglycaemic clamp technique [31, 32].

Indeed, most of the available cross-sectional studies, including a large data from the National Health and Nutrition Examination Survey (NHANES), support an inverse relationship between serum 25(OH)D and glycaemia and insulin resistance. However, the result from this survey was applied only to particular ethnic groups, non-Hispanic White and Mexican-American but not non-Hispanic Black [33]. Prospective studies assessing the association between 25(OH)D and diabetes risks are very limited. A negative association between basal serum concentration of 25(OH)D level and future hyperglycaemia and insulin resistance has been found in one prolonged study conducted over a 10-year period [34]. A recent systematic review and meta-analysis showed that each 10-nmol/l increase in 25(OH)D levels was associated with a 4% lower risk of T2DM. In addition, the relative risk of T2DM was 0.62 (95% CI 0.54–0.70) when compared with control [35].

Table 3. Summary of studies reporting association between 25(OH)D and immunity in children (boys and girls)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Age</th>
<th>n</th>
<th>25(OH)D, nmol/l</th>
<th>Outcome assessed</th>
<th>Association with outcome</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observational studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wright et al. [159]</td>
<td>16 years (median)</td>
<td>38</td>
<td>44.9</td>
<td>severity of SLE</td>
<td>yes</td>
<td>25(OH)D lower in SLE patients (African origin & obese) compared with control (36.8 vs. 9.2%, p = 0.001)</td>
</tr>
<tr>
<td>Peroni et al. [160]</td>
<td>5.6 years</td>
<td>37</td>
<td>92.1±39.1 (mild AD), 68.6±21.4 (moderate), 51.1±14.7 (sever AD)</td>
<td>severity of AD</td>
<td>yes</td>
<td>25(OH)D higher in mild AD compared with moderate and severe AD (p < 0.05)</td>
</tr>
<tr>
<td>Greer et al. [161]</td>
<td>10.1±0.9 years</td>
<td>56</td>
<td>81.4 (T1DM), 70.5 (newly diagnosis)</td>
<td>T1DM</td>
<td>yes</td>
<td>25(OH)D lower in children with T1DM compared with controls [mean (95% CI) = 78.7 nmol/l (71.8–85.6) vs. 91.4 nmol/l (83.5–98.7), p = 0.02]</td>
</tr>
<tr>
<td>Allen et al. [162]</td>
<td>12.7±0.7 months</td>
<td>928</td>
<td>–</td>
<td>infantile food allergy</td>
<td>yes</td>
<td>infants of Australian parents with 25(OH)D ≤50 nmol/l were more likely to be allergic to peanuts (aOR, 11.51; 95% CI 2.01–65.79; p = 0.006) and/or EGG (aOR, 3.79; 95% CI 1.19–12.08; p = 0.025)</td>
</tr>
<tr>
<td>Interventional studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manaseki-Holland et al. [153]</td>
<td>13.18±9.1 years</td>
<td>224</td>
<td>–</td>
<td>reduction of pneumonia attack</td>
<td>yes</td>
<td>children received 100,000 IU vitamin D$_3$ along with AB; decreased risk of repeat episode in treatment group (92/204; 45%) compared with control (122/211; 58%)</td>
</tr>
<tr>
<td>Camargo et al. [152]</td>
<td>10.1±0.9 years</td>
<td>143</td>
<td>17.47</td>
<td>ARIs attack in winter</td>
<td>yes</td>
<td>children received milk fortified with 300 IU of vitamin D$_3$; reduction in ARIs attack in treatment group comparing with control (aOR 0.52 (95% CI 0.31–0.89))</td>
</tr>
<tr>
<td>Manaseki-Holland et al. [154]</td>
<td>1–11 months (range)</td>
<td>1,487</td>
<td>–</td>
<td>incidence of pneumonia</td>
<td>no</td>
<td>children received 100,000 IU vitamin D$_3$ every 3 months for 18 months; no effect of vitamin D on the frequency of pneumonia episodes</td>
</tr>
</tbody>
</table>

SLE = Systemic lupus erythematosus; AD = atopic dermatitis; AB = antibiotics; ARIs = respiratory infections; T1DM = type 1 diabetes mellitus; aOR = Adjusted odds ratio. Data are shown as mean (SD), unless indicated otherwise.
paring the highest to the lowest category of 25(OH)D levels [35].

Based on the available observational studies, little is known about the association between insulin sensitivity/resistance, glucose intolerance and vitamin D deficiency in the paediatric population. Three studies have failed to find any association between vitamin D and insulin resistance in obese children [36–38]. Other studies report an inverse association between hypovitaminosis D and measures of insulin resistance and glycaemia in obese chil-

Fig. 2. Vitamin D and its role in glucose homoeostasis and pancreatic beta-cell function. Beta cells (above): Source of 1,25(OH)D includes the circulation or the pancreatic β cells. I. 1,25(OH)D up-regulated insulin gene transcription via VDR binding which lead to more insulin synthesis. II. Vitamin D improves insulin secretion and glucose tolerance also through indirect regulation of intracellular calcium through increasing the ATP/ADP ratio resulting in closure of the plasma membrane ATP-gated channels and depolarization of the cell leading to exocytosis of insulin-containing secretory granules. III. Modulation of cytokine secretion and apoptotic pathways occurs through interaction with VDRE in cytokine genes, inactivation of NF-κB and suppression of Fas receptor. IV. Upregulation of calbindin may also protect against cytokine-induced apoptosis by increasing intracellular free calcium. Target tissues (below): I. Vitamin D stimulates the expression of insulin receptors and signalling transduction, resulting translocation of GLUT4 to the membrane and glucose transport in peripheral tissues. II. Vitamin D causes activation of peroxisome proliferator-activated receptor (PPAR-δ), a transcription factor implicated in the regulation of fatty acid metabolism.
did not find any effect of vitamin D supplementation in this study showed a significant increase in deposition in-creatic β-cell function was measured. The results from deposition index which was used as an indication for pan-
tics, study population, confounders and techniques used to assess glucose homeostasis and β-cell function.

Link between Vitamin D and Glucose Homeostasis – Evidence from Intervventional Studies

A possible association between vitamin D and insulin secretion was raised in interventional studies over three decades ago [29, 42, 43]. On the other hand, other studies did not find any effect of vitamin D supplementation [44–46]. Grimnes et al. [47] could not find any effect of 6 months of 20,000 IU vitamin D₃ administrated orally twice a week to a healthy Caucasian cohort who had vita-
m in D levels lower than 40.3 ± 12.8 nmol/l on both insu-
lin sensitivity and secretion. This was consistent with an-
other study which showed that the injection of two doses of 100,000 IU vitamin D₃ did not lower fasting glucose or insulin sensitivity in a Caucasian cohort [48]. However, these results could not be applied to other ethnic popu-
lations as shown by the study which involved South Asian participants and demonstrated a significant effect of the administra-
tion of 4,000 IU vitamin D₃ for 6 months to decrease fasting glucose and increase insulin sensitivity in vitamin D-deficient and insulin-resistant South Asian women [49]. Mitri et al. [50] designed the short-term Cal-
cium and Vitamin D for Diabetes Mellitus (CaDDM) 2 by 2 factorial, double-masked, placebo-controlled trial, which looked at the effect of vitamin D and calcium sup-
plementation alone or in combination on pancreatic β-cell function, insulin sensitivity and glucose tolerance in 92 mainly Caucasian, obese and glucose-tolerant adults. Study participants were divided into four groups; one of them taking 2,000 IU vitamin D₃ for 16 weeks. The deposition index which was used as an indication for pan-
creatic β-cell function was measured. The results from this study showed a significant increase in deposition in-
dex in the vitamin D supplement group and improve-
ment in pancreatic β-cell function by 15–30% with a ten-
dency to decrease the rise in the measure of glycaemia. A recent double-blind, placebo-controlled trial of obese vi-
tamin D-deficient adolescents aged 9–19 years failed to find any significant effect of 6 months’ supplementation of 4,000 IU vitamin D on BMI, inflammatory markers, fasting glucose and insulin [51].

In conclusion, results from interventional studies show some degree of inconsistency with heterogeneity of tech-
niques, study designs, subject characteristics and the ther-
apeutic regimen. Most of the available studies used indi-
rect methods to measure the effect of vitamin D on insulin sensitivity. Basal vitamin D levels were not available for most of the studies and there was no universal threshold to define vitamin D deficiency, insufficiency or sufficiency.

Link between Vitamin D and Cardiovascular Function – Putative Mechanisms

Seasonal variation of cardiovascular disease was ob-
served many years ago, with higher mortality from isch-
emic heart disease occurring in winter [52]. A linear re-
lationship between mortality from ischaemic heart disease and higher latitude has been reported as well, with decreasing mortality with residence within increasing proximity to the equator [53]. Results of several clinical and epidemiological studies have linked low vitamin D status to cardiovascular risk factors such as hypertension, diabetes, obesity and elevated blood cholesterol level [54, 55].

Vitamin D may affect cardiovascular health through many mechanisms. These include downregulation of PTH [56], suppression of the renin-angiotensin-aldoste-
one system [57], regulation of vascular smooth muscle and cardiomyocyte proliferation and hypertrophy [58, 59], enhancement of endothelial cell-derived vascular vasodilatation [60], regulation of coagulation [61], modula-
tion of inflammatory markers [62] and metalloprotein-
ase-9 (MMP-9) [63], as well as improved insulin sensitiv-
ity and secretion [64] (fig. 3).

Chronic vitamin D deficiency leads to overproduction of PTH, mainly due to decreased intestinal calcium ab-
sorption and increased calcium mobilization from bone. Overproduction of PTH can have several cardiovascular consequences including left ventricular hypertrophy (LVH), valvular calcification, myocardial calcification, cardiac arrhythmia and arterial hypertension [65, 66]. The renin-angiotensin system (RAS) is known to play a vital role in controlling blood pressure, intravascular vol-
ume and electrolyte balance. Low vitamin D levels up-regulate the renin-angiotensin-aldosterone system, increase inflammation and cause endothelial dysfunction. Genetic disruption of the VDR in mice results in over-stimulation of the RAS, leading to high blood pressure and cardiac hypertrophy [67]. Similarly, in humans, recent studies have reported an inverse association between 1,25(OH)₂D₃ level, renin activity and blood pressure in both normal and hypertensive human subjects [68, 69].

Vitamin D has been recognized as a powerful modulator which can inhibit various inflammatory mediated processes such as atherosclerosis, myocardial infarction and blood clot formation. Vitamin D deficiency is reported to induce atherosclerosis [70] and enhance tissue plasminogen activator secretion in experimental animals [71]. It has been shown to reduce MMP-9 secretion [63].

Vitamin D through its VDR in heart muscle has been suggested to exert a direct role on the heart muscle and to regulate the cardiomyocyte cell cycle [72]. Vitamin D has been shown to suppress cardiac cell proliferation and to maintain structure and function of cardiac cells directly through anti-inflammatory, antifibrotic and antiapoptotic mechanisms [73, 74].

Link between Vitamin D and Cardiovascular – Evidence from Observational Studies

The NHANES in the United States, which involved >16,600 subjects, showed a strong and independent association between low vitamin D and angina, myocardial infarction and stroke [75]. Marniemi et al. [76] also found that both low vitamin D intake and low serum levels of 1,25(OH)₂D predicted acute myocardial infarction and stroke after a 10-year follow-up in an elderly population-based survey. Using data from the (NHANES) 2001–2004 study population which included 2,609 hypertensive adults, a linear inverse association between 25(OH)D concentration and cardiovascular mortality (p = 0.010) has been suggested, a hazard ratio of 3.2 (95% CI 1.14–8.99) in the first quartiles (<17 ng/ml), compared with the highest 25(OH)D quartile (≥ 29 ng/ml) [77]. The association between low levels of vitamin D and hypertension has been studied and reported extensively. A cross-sectional study which involved 2,722 adults recruited from California has reported an increased prevalence of hypertension with serum levels of 25(OH)D <100 nmol/l, with an even higher prevalence (52%) when serum 25(OH)D falls <38 nmol/l [78].

Results from prospective studies showed mixed results. One study found a twofold increase in the incidence of myocardial infarction in vitamin D-deficient healthy men after a 10-year follow-up period, even after controlling for factors known to be associated with coronary artery disease [79]. However, another study did not find any significant difference in the prevalence of cardiovascular events between vitamin D deficiency and sufficiency after a 4.4-year follow-up of 813 elderly men who had osteoporotic fractures [80]. There is less evidence from paediatric studies of the association between vitamin D deficiency and cardiovascular risk factors. One recent systematic review which looked at the asso-
association between 25(OH)D and cardiometabolic risk factors did not find sufficient evidence to support this association [81]. Most of the reviewed cross-sectional studies found an inverse relationship between systolic blood pressure and vitamin D [82, 83]. Severe nutritional vitamin D deficiency has been reported as one of the aetiological factors in the development of dilated cardiomyopathy and significant improvement with subsequent vitamin D and calcium supplementation [84, 85]. Table 2 summarizes some of the recent studies that have been conducted in children.

Collectively, current evidence from observational studies supports the role of hypovitaminosis D in the development and/or progression of cardiovascular disease in the adult population. There is insufficient evidence available to conclude whether or not vitamin D status in childhood significantly alters cardiovascular risk in adulthood.

Link between Vitamin D and Cardiovascular – Evidence from Interventional Studies

There remains some uncertainty regarding the benefit of vitamin D supplementation. A single oral dose of 100,000 IU vitamin D3 has been shown to increase the serum level of 25(OH)D in vitamin D-deficient patients with peripheral artery diseases, without any significant effect on endothelial function, arterial stiffness, coagulation and inflammation markers [86]. Another study involving 78 Scottish adults showed a significant effect of single high dose of 100,000 IU vitamin D2 in improving endothelial function in patients with T2DM and low serum 25-hydroxyvitamin D levels during winter [87]. The Women’s Health Initiative trial failed to find any difference on cardiovascular disease outcome over a 7-year follow-up period of 36,282 post-menopausal women treated with both 400 IU of vitamin D and 1 g calcium daily compared to placebo. However, Hsia et al. [88] and others [89] found an overall trend towards a favourable effect of taking vitamin D to reduce total cardiovascular mortality and cancer. A meta-analysis conducted to summarize the available randomized trials assessing the relationship between vitamin D and cardiovascular outcomes was unable to find any significant effect of vitamin D on total mortality from cardiovascular disease (relative risk (RR) 0.96; 95% CI 0.93–1.00; p = 0.08), myocardial infarction (RR 1.02; 95% CI 0.93–1.13; p = 0.64) or stroke (RR 1.05; 95% CI 0.88–1.25; p = 0.59). Additionally, there were no significant changes in the other cardiometabolic risk factors such as blood pressure, lipids and blood glucose [90].

Studies examining the effect of vitamin D supplementation on cardiovascular events in children are scarce. The first randomized controlled trial involved a 16-week administration of either 2,000 or 400 IU vitamin D3 in 44 healthy African-American youths aged 14–18 years and found that the administration of vitamin D can counteract the progression of aortic stiffness and there was also a negative association between adiposity and vitamin D level in the treatment group [91]. One study of 14 post-menarcheal obese females, who had been treated for vitamin D deficiency, did not find an association between vitamin D level and blood pressure but reported a beneficial effect of vitamin D on glucose homeostasis. This study also indicated one possible adverse effect of vitamin D on specific ethnic groups as shown by a positive association between vitamin D and lipid profile and alanine transaminase in African-Americans [92].

In summary, current evidence from interventional studies does not clearly support the use of vitamin D supplementation in protecting against cardiovascular disease [93, 94]. Therefore, large clinical trials with robust follow-up are still needed. There also remains a need for assessment of the effect of childhood vitamin D status on cardiovascular disease in adulthood [85].

Immune Function and Its Links to Vitamin D Deficiency – Putative Mechanisms

An immunoregulatory role for vitamin D was suggested several decades ago when sunshine was shown to increase resistance to infections in experimental animals [95]. The effect of seasons and/or latitude on vitamin D status has been discussed extensively [96] and vitamin D and/or UV radiation has long been advocated as a cure for various illnesses and infections [97]. The evidence for vitamin D as a modulator of immune responses is reviewed below.

Physical Barrier and Innate Immunity

Innate immunity provides the first defence against external challenges. The first component of the innate immune system consists of a combination of physical and chemical barriers. Expression of VDR and 1α-hydroxylase by epithelial cells in the respiratory passages, skin, gut and urogenital system suggests that vitamin D may be involved in preservation of barrier integrity and maintaining intracellular functions [98, 99]. Its role in maintaining barrier functions is also supported by the observation that...
vitamin D upregulates genes which encode junctional proteins between epithelial cells, such as tight junctions (e.g. occludin), gap junctions (e.g. connexion 43) and adherens junctions (e.g. E-cadherin) [100–102]. However, more research is needed to fully understand the role of vitamin D in this area.

The second level of innate immunity is production of antimicrobial peptides (AMPs) such as α-defensins, β-defensins and cathelicidin. Vitamin D stimulates human AMP expression in different epithelial tissues such as bronchial [103], urogenital [104], and skin [105] and also in myeloid cells [106]. Aside from their direct microbicidal role, AMPs modulate many other immune processes, including mast cell degranulation, stimulation of cytokine and chemokine production, cell differentiation, vascular permeability, wound healing and the process of antigen presentation [107–110].

Finally, vitamin D has been suggested to play a vital role at the third level of defence which is the specific immune response, mainly through its effect on the recruitment of phagocytic cells, promotion of healing and initiation of inflammatory responses [111, 112] as discussed below.

Antigen Presentation and Adaptive Immunity

Vitamin D has been suggested to differentially affect dendritic cell (DC) subsets to enable more tolerogenic responses, and thereby promote the development of regulatory T cells (Tregs) [113, 114]. While leaving plasmacytoid DCs unaffected, 1,25(OH)2D3 can block myeloid DC maturation, causing reduced expression of MHC class II, and co-stimulatory molecules [115]. Both macrophages and DCs express increasing levels of 1α-hydroxylase during maturation into antigen-presenting cells (APCs). In DCs, the outcome of this is that both vitamin D and its metabolite (25-OHD3) are able to suppress the differentiation and function of these cells. When the APCs mature, their ability to produce active vitamin D is increased but they express less VDRs. The vitamin D from mature APCs has been suggested to act in a paracrine fashion on neighbouring immature APCs to trigger more antigen presentation, whilst the ability of mature APCs to decrease VDR expression prevents over-stimulation [116].

T cells also express the VDR and appears to be a direct target of vitamin D [117]. T cells were traditionally divided into T-helper (Th) cells (CD4+) – responsible for regulating T- and B-cell responses and cytotoxic T cells (CD8+) – capable of killing target cells such as virally infected cells or tumour cells. More recently, additional subsets have been identified including Tregs and several functionally distinct Th cell subsets including Th1, Th2 and Th17 cells. Tregs are crucial for the maintenance of immunological self-tolerance, whilst the Th cell subsets secrete different patterns of cytokines resulting in distinct immune responses. An imbalance in the Th1/Th2 immune response has been implicated in the pathogenesis autoimmune disorders [118]. Vitamin D suppresses effector T-cell function, influences Th subsets, and stimulates Tregs [119, 120]. Th cells have been found to be a main target of vitamin D [121] which inhibits production of Th1-related cytokines such as TNF-α and IFN-γ, whilst promoting Th2 cytokines such as interleukin (IL)-4 and IL-5 [122, 123]. However, other studies could not confirm these findings [124]. Th17 cells are a recently discovered subset of Th cells, which are thought to be important in the pathogenesis of autoimmune diseases such as multiple sclerosis and rheumatoid arthritis. Vitamin D also downregulates Th17-secreted cytokines such as IL-17 and IL-21 [124, 125]. Therefore, vitamin D deficiency may promote autoimmune diseases through both direct and indirect roles in regulating Th1/Th17 and Treg function in addition to skewing cytokine production towards a Th2 phenotype [118].

Finally, a number of reports indicate that vitamin D can inhibit the generation of memory B cells from naive B cells, inhibit B-cell proliferation, induce apoptosis and suppress immunoglobulin secretion and maintain the development and function of natural killer cells [126, 127]. Figure 4 shows the potential role of vitamin D in the different components of the immune system.

Link between Vitamin D and Immune Function – Evidence from Observational Studies

Clinical associations between the prevalence of immune-related illness and vitamin D deficiency have been reported widely in the literature. Results from most observational studies report an inverse relationship between vitamin D status and the risk of acute respiratory tract infection, tuberculosis and pneumonia in both paediatric and adult populations [128–131]. In addition, there is a strong association between vitamin D and the prevalence of oral [132, 133], gastrointestinal [134], urinary tract [104] and ocular infections [135]. The impact of vitamin D on several dermatological conditions such as wound healing, psoriasis, atopic dermatitis and acne has also been reported [136–140]. Finally, several autoimmune diseases such as inflammatory bowel diseases, multiple sclerosis, systemic lupus erythematosus, type 1 diabetes mellitus and rheumatoid arthritis have been re-

DOI: 10.1159/000357731

Ahmed El-Fakhri/McDevitt/Shaikh/Halsey/
viewed. Again, significant associations between a low vitamin D and the prevalence autoimmune disorders were reported [141–144].

Link between Vitamin D and Immune Function – Evidence from Interventional Studies

Despite these strong observational and theoretical links between vitamin D and immune system disorders, interventional studies looking at the therapeutic effect of vitamin D supplementation show conflicting results. In a randomized double-blind study, 4,000 IU of vitamin D₃ daily for 1 year in patients with an immune disorder and frequent attacks of acute respiratory tract infection showed a 23% decrease in the number of attacks and 60% reduction of antibiotic use [145]. However, in another trial using healthy adults, administration of vitamin D did not affect the severity or prevalence of acute respiratory tract infection [146, 147]. In one study, high-dose vitamin D supplementation was reported to accelerate clinical and radiological improvement in pulmonary tuberculosis patients [148]. However, others reported no effect [149]. A recent systematic review of randomized, placebo double-blind trials assessing the beneficial effect of vitamin D administration in patients with multiple sclerosis was unable to reach a verdict with no significant effect seen in 4 out of 5 available trials [150]. Although there are limited studies looking at the effect of vitamin D intervention in children, most publications show a beneficial effect of vitamin D supplementation on reducing acute respiratory tract infections [151, 152]. A randomized controlled trial looking at the effect of 100,000 IU of vitamin D supplementation in South Asian children with pneumonia...
showed a reduced number of repeat attacks in the vitamin D group (58%; RR 0.78; 95% CI 0.64–0.94; p = 0.01) [153]. However, supplementation with the same dose once every 3 months for a period of 18 months did not reduce the prevalence of pneumonia in high-risk South Asian infants [154]. Table 3 summarizes some of recent clinical studies which have been conducted in children.

In summary, scientific studies support an important role for vitamin D in many aspects of the immune response. Clinical evidence from observational studies shows a strong correlation between vitamin D deficiency and development of various immune and infectious diseases.

Conclusion

The numbers of reports that highlight possible therapeutic actions of vitamin D have increased over the last decade. Initial observational studies have indicated that vitamin D deficiency may be associated with impairment in glucose homeostasis, increase cardiovascular risk and immune dysfunction. However, interventional studies have been inconsistent and there is a need for more detailed and larger-scale studies to clarify the therapeutic benefit of vitamin D in these important clinical areas.

References

Extra Skeletal Effect of Vitamin D

Extra Skeletal Effect of Vitamin D

