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(from 50.9 ± 9.0 to 21.3 ± 8.9 ng/min/100 ml, p = 0.02). TEA 
attenuated FBF (–14.7 ± 3.2%, p = 0.002) and abolished BK-
stimulated t-PA release (from 22.9 ± 5.7 to –0.8 ± 3.6 ng/
min/100 ml, p = 0.0002).  L -NMMA attenuated FBF (p < 0.0001), 
but did not inhibit BK-induced t-PA release (nonsignificant). 
 Conclusion:  BK-stimulated t-PA release is partly due to cyto-
chrome P 450 -derived epoxides and is inhibited by K +  Ca  chan-
nel blockade. Thus, BK stimulates both EDHF-dependent va-
sodilation and t-PA release.   © 2014 S. Karger AG, Basel 

 Introduction 

 The endogenous fibrinolytic system is a crucial compo-
nent of blood flow regulation and protects against intra-
vascular thrombosis. Impairment in endogenous fibrino-
lysis characterized by inhibition of tissue plasminogen ac-
tivator (t-PA) release is thought to be an underlying factor 
in endothelial dysfunction and atherothrombosis  [1, 2] . 
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 Abstract 

  Aims:  Bradykinin (BK) stimulates tissue plasminogen activa-
tor (t-PA) release from human endothelium. Although BK 
stimulates both nitric oxide and endothelium-derived hyper-
polarizing factor (EDHF) release, the role of EDHF in t-PA re-
lease remains unexplored. This study sought to determine 
the mechanisms of BK-stimulated t-PA release in the forearm 
vasculature of healthy human subjects.  Methods:  In 33 
healthy subjects (age 40.3 ± 1.9 years), forearm blood flow 
(FBF) and t-PA release were measured at rest and after intra-
arterial infusions of BK (400 ng/min) and sodium nitroprus-
side (3.2 mg/min). Measurements were repeated after intra-
arterial infusion of tetraethylammonium chloride (TEA; 
1 μmol/min), fluconazole (0.4 μmol·min –1 ·l –1 ), and N G -mono-
methyl- L -arginine ( L -NMMA, 8 μmol/min) to block nitric ox-
ide, and their combination in separate studies.  Results:  BK 
significantly increased net t-PA release across the forearm 
(p < 0.0001). Fluconazole attenuated both BK-mediated va-
sodilation (–23.3 ± 2.7% FBF, p  < 0.0001) and t-PA release 
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The endothelium regulates vasodilator tone and fibrino-
lytic capacity by releasing vasoactive substances, including 
nitric oxide (NO), prostacyclin, and endothelium-derived 
hyperpolarizing factor (EDHF)  [3, 4] . Bradykinin (BK) is 
an endogenous cardioprotective vasoactive polypeptide 
that stimulates the release of these molecules and t-PA 
from the endothelium  [5–7] . t-PA is synthesized in endo-
thelial cells, stored in small dense granules and released in 
a dose-dependent manner in response to BK  [6, 8] . t-PA 
converts plasminogen to a proteolytic enzyme, plasmin, 
which digests fibrin-dependent thrombi  [9] . Although it is 
known that BK causes vasodilation via activation of the 
B 2   receptor and subsequent release of NO, prostacyclin, 
EDHF, and t-PA, the downstream mechanisms governing 
t-PA release have not been fully elucidated  [5, 10, 11] .  

 There is mounting preclinical evidence to suggest that 
t-PA release is mediated by EDHF  [12, 13] . Persistent va-
sodilation after inhibition of NO and cyclooxygenase can 
be largely attributed to hyperpolarization by EDHF  [3, 
14] . The hallmark of hyperpolarization is activation of 
endothelial and/or smooth muscle cell calcium-activated 
potassium (K +  Ca ) channels and their inhibition by apa-
min and charybdotoxin in preclinical studies  [3, 15] . In 
human studies, tetraethylammonium chloride (TEA) an-
tagonizes K +  Ca  channels, thus facilitating characteriza-
tion of EDHF-dependent responses  [16, 17] . Endotheli-
um-dependent hyperpolarization may also be partly due 
to the release of epoxyeicosatrienoic acids (EETs) from 
cytochrome P 450 -dependent metabolism of arachidonic 
acid and subsequent stimulation of K +  Ca  channels on en-
dothelial cells  [18] . The role of EETs as potential EDHFs 
has been investigated in humans using azole compounds, 
such as fluconazole, which selectively inhibit epoxidation 
(EET generation) of arachidonic acid  [14, 18, 19] .

  Since BK-mediated t-PA release may be crucial in 
maintaining the endogenous thrombolytic potential, it is 
important to determine its underlying mechanisms. Our 
overall goal was to investigate whether EDHF release stim-
ulates t-PA, with the hypothesis that BK stimulates EDHF-
mediated t-PA release in the human circulation. We inves-
tigated whether activation of the K +  Ca  channels and/or cy-
tochrome P 450 -derived EETs mediates t-PA release.

  Methods 

 Subjects 
 Thirty-three healthy subjects aged 21–60 years and free 

of  smoking, hypercholesterolemia, hypertension, diabetes, car-
diovascular disease, medication use, or any other systemic disor-
der participated in the study (ClincalTrials.gov Identifier: 

NCT00166166;  table 1 ). Written informed consent was obtained 
and the study was approved by the Emory University Institu-
tional Review Board and the Food and Drug Administration.

  Experimental Protocols  
 Subjects were enrolled into 3 separate protocols (described be-

low) performed sequentially. Measurements were performed after 
an overnight fast in a quiet, temperature-controlled (22–24   °   C) 
room. Subjects received 975 mg of oral aspirin 90 min prior to ini-
tiation of the study to inhibit prostanoid release  [20, 21] . An intra-
venous catheter was placed into a deep antecubital vein for venous 
sampling and an arterial cannula into the brachial artery for arte-
rial pressure monitoring, drug delivery, and blood sampling. 

  FBF Measurements 
 Simultaneous FBF measurements were obtained in both arms 

with the use of a dual-channel venous occlusion strain gauge ple-
thysmograph (model EC6; DE Hokanson, Bellevue, Wash., USA) as 
previously described  [14] . The mercury-filled silastic strain gauge 
was placed around the forearm and connected to a plethysmograph 
calibrated to measure the percent change in volume  [14] . An upper 
arm cuff was inflated to 40 mm Hg to occlude venous outflow and 
FBF measurements were recorded every 15 s up to eight times, and 
a mean FBF value (in ml·min –1 ·100 ml –1 ) was computed. Forearm 
vascular resistance was calculated as the mean arterial pressure di-
vided by FBF (expressed as mm Hg/ml·min –1 ·100 ml –1 ). 

  Protocol 1: Effect of K +  Ca  Channel Activation on 
BK-Stimulated t-PA Release 
 FBF was measured after a 30-min rest during saline infusion 

(total infusion rate 2.5 ml·min –1 ) and after intra-arterial infusions 
of 100, 200, and 400 ng/min of BK (Clinalfa, Laufelfingen, 
 Switzerland) given for 8 min each (n = 18). After 30 min, intra-
arterial TEA (Sigma-Aldrich, Allentown, Pa., USA, sterilized and 
tested for pyrogenicity by the Emory Investigational Drug Phar-
macy) was infused at 1 μmol/min for 8 min. When given at 0.25–1 

 Table 1.  Subject characteristics 

Male, n 21 (63.6%)
Age, years 40.3±1.9 
Ethnicity, n

White 8 (24.2%)
Black 21 (64.3%)
Hispanic 4 (12.1%)

Blood pressure, mm Hg
Systolic 121.6±2 
Diastolic 73±1.4 

Heart rate, b.p.m. 68±1.5 
Body mass index 28±1 
Fasting blood glucose, mg/dl 86.4±1.4 
Triglycerides, mg/dl 102.4±9.5 
Total cholesterol, mg/dl 170±6.4 
High-density lipoprotein cholesterol, mg/dl 54.3±2.3 
Low-density lipoprotein, mg/dl 95.3±5.7 
Tobacco smoking, % 0 
Hematocrit, % 39.4±0.6 
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mg/min, TEA selectively inhibits K +  Ca  channels, but reduces FBF 
with BK only at 1 mg/min (<0.6 μmol/min)  [16, 22–24] . This dose 
and timing was effective in attenuating FBF and agonist-stimulat-
ed vasodilation in previous studies  [4, 16, 25] . While continuing 
the infusion of TEA, BK infusions were re-administered. Arterial 
blood pressure and FBF measurements were repeated in the last 
2 min of each infusion. Arterial and venous blood was sampled at 
baseline prior to the infusion of drug and at peak doses of BK. 

  Protocol 2: Effect of Cytochrome P 450  Metabolites to 
BK-Stimulated t-PA Release 
 FBF was measured at rest during saline infusion and after intra-

arterial infusion of escalating doses of BK (n = 11). Thirty minutes 
later, fluconazole (Pfizer, New York, N.Y., USA) was infused intra-
arterially at 0.4 μmol·min –1 ·l –1  for 5 min. This dose has been effec-
tive in attenuating vasodilation during sustained flow conditions 
 [4, 17] . While continuing the infusion of fluconazole, escalating 
doses of BK were administered. Finally, combined intra-arterial in-
fusions of fluconazole and TEA were given for 8 min and BK infu-
sions were repeated. This protocol allowed to assess the contribu-
tion of cytochrome P 450  metabolites alone and in combination with 
K +  Ca  channel activation to BK-stimulated t-PA release. 

  Protocol 3: Effect of NO on BK-Stimulated t-PA release  
 The contribution of NO to BK-stimulated t-PA release was also 

determined in the presence of K +  Ca  channel activation (n = 13). 
FBF was measured at rest and after intra-arterial infusion of BK. 
Thirty minutes later, TEA (1 μmol/min) was infused for 8 min and 
followed by repeat infusions of BK. After 30 min, TEA and N G -
monomethyl- L -arginine ( L -NMMA; Clinalfa) at 8 μmol/min were 
infused together for 8 min to inhibit EDHF and NO synthesis, fol-
lowed by repeat administration of BK in escalating doses while 
continuing infusions of the two antagonists. This dose and timing 
of  L -NMMA were effective in attenuating FBF and agonist-stimu-
lated vasodilation in previous studies  [16, 25] .

  Effect of Sodium Nitroprusside on t-PA Release 
 Finally, in 30 subjects, the comparative contribution of the en-

dothelium-independent vasodilator sodium nitroprusside (SNP) 
and BK was investigated. FBF was measured during rest and after 
intra-arterial infusion of escalating doses of BK. Thirty minutes 
later, SNP (Hospira, Lakeforest, Ill., USA) was infused intra-arte-
rially at 1.6 and 3.2 μg/min. 

  Blood Sampling and Biochemical Assays  
 Simultaneous arterial and venous blood samples were obtained 

from the infused arm before and after peak doses of vasodilator 
drugs, cooled, centrifuged, and stored in tubes containing 0.5  M  ci-
trate buffer (Diapharma, West Chester, Ohio, USA) at –70   °   C. t-PA 
antigen levels were determined in duplicate using a two-site enzyme-
linked immunosorbent assay (Diapharma) as described previously 
 [26] . Net release or uptake rates at each time point were calculated: 
net release = (C V  – C A ) × {FBF × [(101 – hematocrit) / 100]}  , where 
C V  and C A  represent the concentrations of t-PA in the brachial vein 
and artery, respectively. 

  Statistical Analysis 
 To determine the effects of the interventions on FBF and fore-

arm vascular resistance, changes in the flow and resistance re-
sponses between the control, single blockade, and combined 

blockade were compared using repeated-measures ANOVA. To 
determine the effects of treatments on net t-PA release, changes in 
net t-PA release of control, single blockade, and combined block-
ade were compared using one-way ANOVA with the Tukey post 
hoc test. Changes in the response were converted to percentage 
changes of least-square means when presented in the text. Data are 
presented as means ± SEM in the text. The least-square means and 
standard errors are presented in the figures. A value of p < 0.05 was 
considered statistically significant.

  Results 

 Baseline Subject Characteristics 
 Thirty-three healthy (age 40.3 ± 1.9 years, 64% male) 

normotensive, nondiabetic, nonobese, nonsmoking sub-
jects with normal serum cholesterol levels were studied 
( table 1 ). During intrabrachial drug infusions, no chang-
es in blood pressure or heart rate were observed. 

  Effect of K +  Ca  Channel Activation on FBF and 
BK-Stimulated t-PA Release 
 BK produced a dose-dependent increase in FBF (p = 

0.002) and a decrease in vascular resistance (p  = 0.03; 
 fig. 1 a, b). BK significantly increased the arteriovenous 
t-PA concentration gradient and net t-PA release across 
the forearm (from –0.3 ± 0.5 to 36.9 ± 5.5 ng/min/100 ml, 
p = 0.002;  fig. 1 c;  table 2 ). There was no association be-
tween net t-PA release and age, sex, body mass index, to-
tal cholesterol, and LDL levels. 

  Infusion of TEA decreased resting FBF by 14% (p = 
0.0001) and increased vascular resistance by 18% (p  = 
0.03). Co-administration of TEA with BK attenuated the 
overall response with a 15% (p = 0.002) lower FBF and a 
21% (p = 0.03) higher vascular resistance ( fig. 1 a, b). TEA 
infusion effectively abolished t-PA release with BK (from 
22.9 ± 5.7 to –0.8 ± 3.6 ng/min/100 ml, p = 0.0002) and 
the arteriovenous t-PA concentration gradient ( table 2 ), 
indicating that the effect of BK on endothelial t-PA re-
lease is mediated entirely through K +  Ca  channel activa-
tion ( fig. 1 c). 

  Effect of Cytochrome P 450  Metabolites and K +  Ca  
Channel Activation on FBF and BK-Stimulated 
t-PA Release 
 Infusion of fluconazole decreased resting FBF by 19% 

(p = 0.001) and increased vascular resistance by 27% (p = 
0.001). Fluconazole also blunted the overall vasodilator 
response to BK with a 23% (p < 0.0001) reduction in FBF 
and a 35% (p < 0.0001) higher vascular resistance ( fig. 2 a, 
b). Fluconazole infusion attenuated the t-PA release with 
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BK (from 50.9 ± 9 to 21.3 ± 8.9 ng/min/100 ml, p = 0.02) 
and the arteriovenous t-PA concentration gradient ( ta-
ble 2 ), indicating significant contribution of cytochrome 
P 450  metabolites to BK-stimulated t-PA release ( fig. 2 c). 
Infusion of TEA after fluconazole reduced FBF by an ad-

ditional 20% (p < 0.0001, n = 10) and increased vascular 
resistance by a further 24% (p < 0.0001;  fig. 2 a, b). In the 
presence of fluconazole, infusion of TEA tended to at-
tenuate the arteriovenous t-PA gradient ( table 2 ), but the 
further reduction in net t-PA release did not reach statis-

 Table 2.  Effect of interventions on the arteriovenous gradient

 Venous-arterial t-PA difference, ng/ml

control (n = 33) + TEA (n = 18) + fluconazole (n = 11) + fluconazole + TEA (n = 10) + TEA + L-NMMA (n = 13)

Baseline –0.2±0.3 –0.3±0.3 –0.2±0.8 –0.2±0.8 –0.2±0.4
BK (400 ng/min) 5.6±0.8* 0.03±0.7** 4.4±1.4** 1.6±0.4 2.6±0.9

 * p < 0.05 vs. baseline, ** p < 0.01 vs. control.
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  Fig. 1.  Contribution of K +  Ca  channel activation to BK-stimulated 
vasodilation, and t-PA release. FBF ( a ) and forearm vascular resis-
tance ( b ) changes in response to BK (100, 200, and 400 ng/min) 

alone, and after infusion of TEA (n = 18). Net t-PA release ( c ) in 
response to the peak dose of BK (400 ng/min) and after infusion 
of TEA. Means ± SEM. 
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tical significance ( fig. 2 c). However, TEA infusion attenu-
ated the t-PA release with BK to a greater extent than flu-
conazole (85 ± 4 vs. 61 ± 11% reduction, respectively, p = 
0.05), indicating that of the potential hyperpolarization 
mechanisms, K +  Ca  channel activation is the predominant 
EDHF signaling pathway mediating BK-stimulated t-PA 
release.

  Effect of NO and K +  Ca  Channel Activation on FBF and 
BK-Stimulated t-PA Release 
 To assess the comparative contribution of K +  Ca  chan-

nel activation and NO to BK-stimulated t-PA release, in-
dividual and combined blockade with TEA and  L - NMMA 
were studied. As seen previously, infusion of TEA atten-
uated the vasodilator response to BK with a 17% (p  < 
0.0001) reduction in FBF ( fig. 3 a). Similarly, t-PA release 
with BK was reduced from 20.4 ± 6 to 3.5 ± 3 ng/min/ 

100 ml (p = 0.02), indicating a significant contribution of 
K +  Ca  channel activation to BK-stimulated t-PA release 
( fig. 3 c). Infusion of  L -NMMA after TEA reduced FBF 
by an additional 21% (p < 0.0001) and increased vascu-
lar resistance by a further 42% (p = 0.04;  fig. 3 a, b). In the 
presence of TEA, infusion of  L -NMMA did not further 
affect net t-PA release (p = 0.25;  fig. 3 c;  table 2 ), indicat-
ing that BK-stimulated t-PA release is through a K +  Ca  
channel-dependent and NO-synthase-independent 
pathway.

  Effect of SNP on t-PA Release 
 Infusions of BK and SNP resulted in similar increases 

in FBF (p = 0.7) and decreases in FVR ( fig. 4 a). However, 
in contrast to BK, the t-PA response (–1.8 ± 2 vs. –0.6 ± 
0.4 ng/min/100 ml, nonsignificant) and the arteriove-
nous t-PA concentration gradient (–0.4 ± 0.3 vs. –0.2 ± 
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  Fig. 2.  Contribution of cytochrome P 450  metabolites and K +  Ca  
channel activation to BK-stimulated vasodilation and t-PA release. 
FBF ( a ) and forearm vascular resistance ( b ) changes in response to 
BK (100, 200, and 400 ng/min) alone, after infusion of fluconazole 

(FLU), and combined infusions of FLU and TEA (n = 11). Net t-PA 
release ( c ) in response to the peak dose of BK (400 ng/min) and 
after initial infusion of FLU, followed by combined FLU and TEA 
infusions. Means ± SEM. 
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  Fig. 3.  Contribution of NO and K   +  Ca  channel activation to BK-
stimulated vasodilation and t-PA release. FBF ( a ) and forearm 
vascular resistance ( b ) in response to BK (100, 200, and 400 ng/
min) alone, after initial infusion of TEA, and combined infusion 
of TEA and  L -NMMA in healthy (n = 13) subjects. Means ± SEM. 

Box plot of net t-PA release ( c ) in response to the peak dose of BK 
(400 ng/min) and after infusion of TEA, followed by combined 
TEA and  L -NMMA infusions. Minimum and maximum values 
are depicted by whiskers and the mean by the symbol marker. 
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Fig. 4. Contribution of BK and SNP to vasodilation and t-PA release. FBF (       a ), forearm vascular resistance ( b ), and net t-PA release ( c ) 
in response to the peak doses of BK (400 ng/min) and SNP (3.2 μg/min). Means ± SEM. NS = Not statistically significant.
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0.3, p = 0.5) remained unchanged with SNP, indicating 
that SNP does not stimulate endothelial t-PA release 
( fig. 4 b).

  Discussion 

 Herein, we demonstrate that although both NO and 
EDHF contribute to BK-induced vasodilation, t-PA re-
lease is solely mediated by EDHF signaling pathways. We 
confirmed that cytochrome P 450 -derived EETs partly 
contribute to BK-stimulated t-PA release and now show 
that it is completely abolished by inhibition of K +  Ca  chan-
nels, the final site of action for several putative EDHFs 
 [27] . Finally, we demonstrate a lack of contribution of NO 
to BK-stimulated t-PA release  [11] .

  Endothelial fibrinolytic activity is an endogenous pro-
tective mechanism against the development and propa-
gation of arterial thrombi  [28] . In the fibrinolytic system, 
plasminogen is activated to plasmin that degrades fibrin 
into soluble fibrin degradation products  [29] . The endo-
thelium releases t-PA through a calcium- and G-protein-
dependent pathway in response to a variety of endoge-
nous mediators, including catecholamines, thrombin, 
and BK  [30, 31] . Endogenous BK is produced by activa-
tion of the plasma kallikrein-kinin system on endothelial 
cells and BK B 2  receptor blockade inhibits t-PA release 
 [10, 11] . 

  In the intact human vasculature, endothelium-depen-
dent hyperpolarization can be mediated by agonists such 
as BK and by physical stimuli including increases in shear 
stress that all increase intracellular calcium, causing 
opening of endothelial K +  Ca  channels and initiating 
downstream processes that explain the EDHF phenom-
ena  [3, 4] . Candidate EDHFs include EETs synthesized 
from the cytochrome P 450 -dependent metabolism of ara-
chidonic acid and hydrogen peroxide generated from the 
degradation of superoxides through various endothelial 
oxidases such as NADPH oxidase or through superoxide-
dismutase-dependent dismutation  [32, 33] . The avail-
ability of TEA, a specific K +  Ca  channel antagonist, for use 
in humans has enabled investigations of EDHF activity in 
the forearm microcirculation  [16, 17, 22] . We now dem-
onstrate that in addition to stimulating vasodilation, BK 
stimulates t-PA release that is completely abolished by 
K +  Ca  channel inhibition  [6, 34] . 

  Endothelium-derived cytochrome P 450  metabolites of 
arachidonic acid can hyperpolarize membranes primarily 
by activating the K +  Ca  channels, although the identity of 
the specific EETs remains controversial  [35–37] . Herein, 

we demonstrate that fluconazole, an inhibitor of cyto-
chrome 2C9, attenuated BK-mediated t-PA release, sug-
gesting that cytochrome P 450  metabolites contribute sig-
nificantly to t-PA release  [19] , observations that have 
been confirmed in both preclinical  [14, 38]  and clinical 
studies in both healthy and hypertensive subjects  [27] .

  Because inhibition of EETs had a lesser effect than in-
hibition of K +  Ca  channels on BK-stimulated t-PA release, 
it appears that other factors that stimulate K +  Ca  channels 
also contribute to EDHF activity, which in preclinical 
studies has been attributed to hydrogen peroxide, gap 
junctions, or elevations in K +  release from endothelial 
cells  [3, 18, 39–41] . Hydrogen peroxide predominantly 
contributes to BK-induced human arteriolar vasodilation 
 [42]  and to t-PA release from rat hearts  [43] , but its role 
in the human circulation   in vivo remains to be estab-
lished. Thus, although hydrogen peroxide activates K +  Ca  
channels and can function as an EDHF, its contribution 
to vascular homeostasis is complex  [44] . It is not only a 
hyperpolarizing factor, but, depending on the species, 
blood vessel, and concentration, hydrogen peroxide can 
also be a signaling molecule and may also cause direct 
smooth muscle relaxation or depolarization of smooth 
muscles and vasoconstriction  [3] . 

  It may be argued that the BK-mediated t-PA release is 
at least partly flow mediated. However, with similar in-
creases in blood flow with SNP, we and previous investi-
gators found no increase in t-PA  [6, 11, 27, 45, 46] . More-
over, infusion of  L -NMMA selectively attenuated FBF 
without affecting the t-PA response to BK. 

  Limitations 
  L -NMMA, fluconazole, and TEA are competitive in-

hibitors and may not completely inhibit NO, cytochrome 
P 450  pathways, and K +  Ca  channels, respectively, and thus 
likely underestimate the physiologic importance of these 
mediators in vivo  [47, 48] . TEA also acts as a competitive 
inhibitor of the nicotinic receptor and reduces water per-
meability of human AQP1 channels; however, at the dos-
es administered, it has been shown to selectively inhibit 
K +  Ca  channels  [49, 50] . It is assumed that TEA effects are 
reflecting endothelium-dependent hyperpolarization as 
we cannot measure membrane potentials in this in vivo 
study. Fluconazole is not a specific inhibitor of cyto-
chrome 2C9; however, we have shown significant inhibi-
tion of resting and BK-mediated vasodilation with this 
inhibitor  [4] . Previous studies with a specific 2C9 inhibi-
tor, sulfaphenazole, or with miconazole, have yielded 
contradictory data  [19, 51–53] . We did not find any eth-
nic differences in BK-mediated t-PA release even though 
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ethnicity affects the vasodilator response to BK; however, 
our study was not powered to explore this issue  [54] . Our 
experiments were conducted in the setting of cyclooxy-
genase inhibition and therefore are unable to explore pos-
sible interactions with prostaglandins. Nevertheless, pre-
vious studies demonstrated no alteration in BK-mediated 
t-PA release with cyclooxygenase inhibition  [11, 55, 56] . 

  Conclusions  

 We demonstrate that BK-stimulated t-PA release is 
via  endothelium-dependent hyperpolarization, partly 
through cytochrome P 450 -derived epoxides and ultimate-
ly via activation of K +  Ca  channels. Although BK stimu-
lates both NO and EDHF-dependent vasodilation, BK-
mediated t-PA release is purely EDHF dependent. Both 
endothelium-dependent vasodilation and endothelial fi-
brinolytic capacity, measured as t-PA release, appear to 
predict the risk of future cardiovascular events  [57, 58] . 
Since abnormalities in the EDHF signaling pathway con-

tribute to both abnormal vasodilation and increased risk 
of thrombosis, agonists that enhance EDHF activity, such 
as epoxide hydrolase inhibitors, need to be investigated 
for their thrombolytic actions.
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