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Abstract
This chapter will introduce a few additional network concepts, and then it will focus on the applica-
tion of the material in the previous chapter to the study of systems biology of aging. In particular, 
we will examine how the material can be used to study aging networks in two sample species: Cae-
norhabditis elegans and Saccharomyces cerevisiae. © 2015 S. Karger AG, Basel

In the previous chapter, we addressed the importance of understanding how com-
plexity theory, as manifested through nonlinear dynamics, hierarchies and network 
analysis, can be used to study the intricate and fascinating behaviors of living systems. 
We discussed why reductionism, while it has its uses, also causes us to lose important 
information about the behavior of a system because breaking a system apart costs us 
information about how the ‘whole’ organism functions. We discussed the difference 
between a complicated system and a complex system, and we then detailed the core 
properties of a complex system. We pointed out that if we were to examine a large 
collection of different complex systems, we would find that complex systems have 
certain common or unifying characteristics. We argued that complex systems have 
‘emergent properties’ meaning that a behavior that was not predicted from infinite 
knowledge of the parts emerges as part of the system’s behaviors. Living systems, 
whether they are cells or ecosystems, do not function like pieces of a jigsaw puzzle. 
Instead, they are often fuzzy or stochastic, with backup systems and redundancies that 
belie their true structure. And we pointed out that an understanding of these systems 
requires a different conceptual framework. Thus, in order to understand complex sys-
tems, we must understand them through a reverse engineering perspective rather 
than a reductionist perspective. One approach to gaining this understanding is 
through the use of network representations of living systems.
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Applications to Aging Networks 19

Networks and Graphs

In the previous chapter, we introduced the basics of network theoretic methods as 
a beginning means to understand the complexity of living systems. In particular, we 
introduced the concept of a graph G that has nodes nj (or vertices) and edges Eij (a 
connection between node nj and node ni). We illustrate an undirected longevity 
gene-protein network in figure 1 [1, 2]. We then introduced the idea of the adja-
cency matrix A. With this simple set of definitions, we now have some powerful 
tools with which to investigate the structure of a network and how it might inform 
us about the biological dynamics of the overall network. We began with the concept 
of connectivity. Consider the network in figure 1. We note that some of the nodes 
appear to have very many connections while others have but a few. Does this imply 
anything about the network and its behaviors? What information could we glean 
from this?

Fig. 1. Illustration of a sample C. elegans longevity gene-protein network. See Witten and Bonchev 
[2] for more details.
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20 Wimble · Witten

Creating a Longevity Network: An Example with Yeast

To understand network dynamics, particularly as applied to aging, we first discuss 
how one can actually go about creating a longevity gene-protein network. The answer 
is, it is not easy, and it takes a good deal of time. The network in figure 1 took nearly 
a year of database searching, literature review and peer collaboration to create. Of 
course, when we started the project, the available databases were not nearly as efficient 
or sophisticated and the data far less abundant than they are now.

Let us first consider Saccharomyces cerevisiae. S. cerevisiae was chosen as the model 
organism for this study because it is well understood, highly studied, and regarded as a 
good model with which to study aging processes [3]. Yeast has two different ways that it 
can age; replicative life span (RLS) and chronological life span. When constructing a lon-
gevity network, genes having an effect on chronological life span and RLS can both be 
considered. Chronological life span is a measure of the length of time a nondividing cell 
can survive, while RLS measures how many times a cell can divide [4, 5]. While both are 
useful, RLS was chosen because it is easier to study with yeast and has been shown to have 
an overlap with more complicated organisms [4]. Each of the proteins in the longevity 
network was shown to increase RLS when removed from the genome as a result of gene 
knockout studies [6–34]. We illustrate the RLS network for S. cerevisiae in figure 2.

Regulation

Direct regulation

Genetic interaction

Proteins are colored by group:

Protein kinases

Extracellular proteins
Nuclear receptors

Phosphatases

Transcription factors

Ligands

Binding

Fig. 2. Illustration of the S. cerevisiae RLS extension network. The different color connecting lines in-
dicate different types of interaction; binding (purple), regulation (dotted lines), genetic interaction 
(green) and direct regulation (grey). The different shapes represent different types of factors in-
volved in the connections.
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Applications to Aging Networks 21

Notice that there are a number of unconnected nodes. These are our islands. They are 
likely unconnected because we do not know how they are connected in the network.

In this example, we are interested in how different subnetworks (TOR: target of ra-
pamycin, and CRH: cellular response to heat) are tied to the RLS network. And in un-
derstanding how the addition of other subnetworks to the RLS network might further 
inform us about the dynamics of aging at a genetic level. We choose the TOR pathway 
due to its demonstrated effect on RLS, and we choose the CRH as a model for how the 
cell responds to environmental stressors [18, 35–37]. Biological aging has been described 
as a cascading breakdown of processes resulting in decreased ability of an organism to 
respond to stress, and thus a model of stress response was included [5]. We illustrate the 
TOR and CRH networks in figure 3 and figure 4. The combined total network TOT is 
illustrated in figure 5. All of the images were created using Pathway Studio software.

All of the networks were built by mining the literature [for details see 2, 24] and on-
line databases. In particular, we added information from the Saccharomyces Genome 

Fig. 3. Illustration of the S. cerevisiae TOR network. The different color connecting lines indicate different 
types of interaction; binding (purple), regulation (dotted lines), genetic interaction (green), expression 
(blue), protein modification (golden green), promotion of binding (lime green) and direct regulation 
(grey). The different shapes represent different types of factors involved in the connections.
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22 Wimble · Witten

Database, YEASTRACT, The Comprehensive Yeast Genome Database, The NetAge 
Database, Sageweb, and AmiGO. Items on the list were verified by comparing them to 
results from papers that measured the effect on RLS of gene deletions (see previous 
references). Lists for the TOR as well as the CRH were constructed using gene ontol-
ogy terms on AmiGO [35] as well as the Saccharomyces Genome Database [37].

Once the lists were prepared, protein-protein interaction data were obtained using 
a yeast interaction database developed to work with the software program Pathway 
Studio. A network of direct connections (DC) was constructed as well as a shortest-
path network (SP) for the RLS, TOR, and CRH subnetworks. A TOT was also con-
structed. TOT was constructed by fusing the three networks together into the larger 
TOT. Not only did Pathway Studio show the connections between proteins, but it also 
yielded information on their function and the type of interaction. We illustrate a sam-
ple list for the CRH network in table 1.

Fig. 4. Illustration of the S. cerevisiae CRH network. The different color connecting lines indicate 
different types of interaction; binding (purple), regulation (dotted lines), genetic interaction (green), 
expression (blue), protein modification (golden green), promotion of binding (lime green) and 
direct regulation (grey). The different shapes represent different types of factors involved in the 
connections.
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Applications to Aging Networks 23

Analyzing the Network: An Example with Yeast and Caenorhabditis elegans

As we mentioned in the previous chapter, it is natural to conclude that the more edg-
es going in and out of a node, the more likely that the given node is going to be of im-
portance to the network. In order to assist us in understanding the connectivity struc-
ture of the network, we create a connectivity plot (fig. 6). To do this, we first count the 
number of nodes with a given connectivity k where the connectivity varies from zero 

Fig. 5. Illustration of the S. cerevisiae combined network TOT. The combined network is composed 
of RLS, TOR, and CRH. Here, we used the software program cytoscape to graphically represent all 
three networks combined, where nodes are color coded to show which network the protein it rep-
resents is part of. Yellow nodes represent proteins in the RLS network, green for the CRH group, and 
blue for the TOR network.

Table 1. Connection types for the CRH network

Connection type n

Binding 39
Direct regulation 17
Expression 2
Genetic interaction 29
Promoter binding 1
Protein modification 2
Regulation 8

The connection types are generated as output from the software. The right-hand 
column represents the number of each connection type.
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24 Wimble · Witten

to the maximum connectivity value. The number of nodes with a given connectivity 
k is called the frequency of that connectivity and is denoted f(k). Next, plot the fre-
quency f(k) versus the connectivity k. We illustrate this for Caenorhabditis elegans in 
figure 6. Because the C. elegans network is large, it has a smoother look to it. Let us 
look at the yeast RLS shortest-path network (RLS-SP) and construct the power-law 
graph (fig. 7).

As we mentioned in the previous chapter, studies of the statistical behavior of var-
ious network structures have shown that networks can have a small variety of overall 
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Fig. 6. Illustration of a sample 
connectivity or degree 
distribution plot for the 
network in figure 1. See Witten 
and Bonchev [2] for more 
details. The rhombs represent 
the complete distribution. The 
squares are the data points 
binned into groups of three. 
The black solid line is the non-
linear regression line. Results 
are significant at p < 0.05.

Fig. 7. The degree distribution plot for yeast RLS-SP network. The horizontal axis is the connection 
number k and the vertical axis is the frequency f(k). Notice that the degree distribution is more ir-
regular and that there are an enormous number of zero and one values in the network. This makes 
fitting a power curve more difficult and also increases the likelihood that the fit will not be statisti-
cally significant due to the small sample size (number of nodes). Sometimes binning can help when 
there are zero node numbers. However, that also affects the fit.
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Applications to Aging Networks 25

topologies; random, regular, small-world and scale-free. Moreover, many real-world 
networks can be shown to be small-world or scale-free. Because scale-free networks 
are ubiquitous and highly relevant to our discussion, let us look at them a bit more 
closely. How can we determine if we have a scale-free distribution?

Power Plots and Scale-Free Networks

It is hard to interpret a plot like that illustrated in figures 6 and 7. However, we observe 
that if we take the log of both sides of f(k) = Bk–γ, the more linear the data plot, the 
more likely it fits a power curve. This follows because we would have ln[f(k)] = −γln(k) + 
ln(B). Thus, networks whose connectivity structure follows a power law of the form 
f(k) = Bk–γ where B and γ are parameters to be estimated should look like negative 
slope lines if they are scale free. The simplest way to estimate the parameters is to per-
form a linear regression on the log-log transformed f(k) versus k data, dropping the 
k = 0 data point because there are no connectivities. We found that B = 1,992.4 and 
γ = 2.2499 with an r2 = 0.969 (fig. 8). Thus, our C. elegans longevity gene-protein net-
work [2] can be said to be a scale-free network.

Categorizing Small-World Networks

Due to the unique nature of scale-free networks, a log-log connectivity plot is enough 
to let you know if you are dealing with a scale-free network. However, this trick does 
not work for other network forms. Because many biological systems demonstrate 
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Fig. 8. Illustration of the log-
log data and regression curve 
through the data of figure 6. 
The outer lines are the 95% 
confidence interval 
boundaries for the linear 
regression estimate. See 
Witten and Bonchev [2] for 
more details.
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26 Wimble · Witten

small-world network behavior, we briefly examine how to determine whether or not 
a network is a small-world network.

To help characterize small-world networks, in the previous chapter, we introduced 
a few new network descriptors. The first was the average path length of a network. Path 
length is the distance or number of edges between two nodes in the network. We used 
the idea of path length to construct the minimum path length between node ni and 
node nj and denoted it by ℓij. We now introduce the concept of the diameter of a net-
work. The diameter is the largest direct distance between any two nodes in the net-
work. Consider the example network in figure 9.

Now, consider the adjacency matrix A derived from the network in figure 9 and 
which is illustrated on the left hand side of table 2. The matrix A represents the num-

A

G

H

E

B

D

F

C

Fig. 9. Illustration of a simple hypothetical 
network.

Table 2. Sample adjacency matrix A (left block of numbers)

A B C D E F G H A B C D E F G H

A 0 0 1 0 0 0 1 0 0 0 21 0 23 0 13 0
B 0 0 1 0 1 0 0 0 0 0 29 0 36 0 15 0
C 1 1 0 0 0 1 0 0 21 29 0 15 0 29 0 22
D 0 0 0 0 1 0 0 0 0 0 15 0 21 0 8 0
E 0 1 0 1 0 1 0 1 23 36 0 21 0 36 0 29
F 0 0 1 0 1 0 0 0 0 0 29 0 36 0 15 0
G 1 0 0 0 0 0 0 1 13 15 0 8 0 15 0 14
H 0 0 0 0 1 0 1 0 0 0 22 0 29 0 14 0

On the right, we have multiplied A times itself five times. The non-zero number in the entry repre-
sents the number of possible paths between node ni and node nj.
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Applications to Aging Networks 27

ber of length 1 paths between node ni and node nj. If we multiply A × A, the entries 
that are non-zero represent the number of length 2 paths between each pair of nodes. 
If we repeat this process exactly N – 1, then we get the total number of paths of length 
1,2,…,N – 1 for the network between each pair of nodes in the network where N is the 
total number of nodes in the network. The right hand side of table 2 illustrates A × 
A × A × A × A, which is the number of paths of length five between each pair of nodes. 
So, for example, there are 29 possible paths of length 5 between node C and node B. 
At some point between 1 and N – 1 multiplies, every element in the matrix or its sub-
sequent multiplies A, A2, A3, A4, . . ., AN – 1 will have been non-zero during the multi-
ply sequence. The diameter is the minimum number of times the adjacency matrix A 
has to be multiplied by itself so that each entry has taken a value greater than 0 at least 
once during the multiply sequence. For this particular network, the diameter is 4.

A network is considered a small-world network if the diameter is small relative to 
the number of nodes in the network. Obviously, 4 is not small relative to 8. To really 
understand small-worldness, one network sample is not sufficient. You actually need 
a set of graphs. However, we have only the one network graph. Therefore, we need 
other means to study the behavior of networks to understand if they are small-world 
networks. To do this, we introduced the ideas of clustering. Observe that even for a 
small network such as the one we have illustrated, the calculations can become te-
dious. We will discuss software at a later point in this chapter.

Node-Node Connectivities

In the previous chapter, we talked about the idea of the centrality of a node where cen-
trality is a measure of the ‘position’ or relative importance of a node in a network. In 
the literature, there are four main measures of centrality of a node: degree centrality, 
betweenness centrality, closeness centrality and eigenvector centrality. From an aging-
related perspective, understanding node centrality of the nodes in a network could 
lead to potential targets for pharmaceuticals that might help hinder disease progres-
sion or extend life span. Briefly, the main centrality measures are:
•	 Degree centrality of a node is denoted by CD(ni); it measures the chance that a 

given node ni in the network will receive something flowing along the network.
•	 Closeness centrality, denoted CC(ni) can be thought of as a measure of how long it 

will take to send a chemical or other biological signal out from ni to all of the 
other nodes in the network.

•	 Betweenness centrality, denoted CB(ni) looks at how often, in a network, a given 
node ni acts as a bridge along the shortest path between two other nodes. From a 
biological perspective, knocking out a node with high betweenness centrality 
would force a signal to reroute itself along a path that was not the shortest path.

•	 Eigenvector centrality, denoted CE(ni) is a measure of the ‘influence’ of a node in a 
network.
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28 Wimble · Witten

Eigenvalue centrality is commonly used as a centrality measure because it is an 
influence measure for a node, and these could be potential targets for further study 
or drug design. In figure 10, we illustrate the SP for the RLS network. For a discus-
sion of SPs in aging, see Managbanag et al. [24]. In figure 11, we illustrate the corre-
sponding eigenvalue centrality measures for the various nodes in the RLS-SP net-
work. The larger the eigenvalue centrality, the larger the influence in the RLS-SP 
network.

Thus, from figure 11, we would infer that GPA2, CDC25, SCH9 and CYR1 are in-
fluential nodes and therefore likely candidates to investigate further. SCH9 – AGC 

Fig. 10. Illustration of the RLS-SP network. Note how highly connected the one node in the upper 
left hand side is. That node, by the way, is RPL16B ribosomal 60S subunit protein L16B; N-terminally 
acetylated, binds 5.8 S rRNA; transcriptionally regulated by Rap1p; homologous to mammalian ribo-
somal protein L13A and bacterial L13 [37].
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Applications to Aging Networks 29

family protein kinase; functional ortholog of mammalian S6 kinase; phosphorylated 
by Tor1p and required for TORC1-mediated regulation of ribosome biogenesis, trans-
lation initiation, and entry into G0 phase; involved in transactivation of osmostress-
responsive genes; regulates G1 progression, cAPK activity and nitrogen activation of 
the FGM pathway [37]. CYR1 – adenylate cyclase is required for cAMP production 
and cAMP-dependent protein kinase signaling; the cAMP pathway controls a variety 
of cellular processes, including metabolism, cell cycle, stress response, stationary 
phase, and sporulation [37]. CDC25 – Membrane-bound guanine nucleotide ex-
change factor; indirectly regulates adenylate cyclase through activation of Ras1p and 
Ras2p by stimulating the exchange of GDP for GTP; required for progression through 
G1 [37]. GPA2 – Nucleotide-binding α-subunit of the heterotrimeric G protein inter-
acts with the receptor Gpr1p, has signaling role in response to nutrients [37]. Witten 
and Bonchev [2] illustrate these concepts for the C. elegans longevity gene network il-
lustrated in figure 1 of that paper.

Most network analysis programs calculate the basic centrality and other measures. 
The algorithms for these calculations are tedious and not trivial to program. There-
fore, it is better to use one of the programs discussed in the upcoming software sec-
tion rather than to write your own programs to make the calculations. In table 3, we 
illustrate the properties of all four of our original networks and their corresponding 
SPs.
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Fig. 11. Illustration of the eigenvalue centrality measures for the yeast replicative shortest-path life 
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network.
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30 Wimble · Witten

Interpreting the Results

From the eigenvalue centrality, we have already seen a number of genes worth inves-
tigating due to their influential nature in the networks. From the graph of the DC, 
we discovered that the TOR1 protein was shared between the RLS and TOR net-
works, and the HOS2 gene was shared between the RLS and the CRH networks. It 
was also discovered that the TOR and CRH networks were densely connected to the 
RLS network. However, there were relatively few connections between the CRH and 
TOR networks. TOR1 is responsible for PIK-related protein kinase and rapamycin 
target; subunit of TORC1, a complex that controls growth in response to nutrients 
by regulating translation, transcription, ribosome biogenesis, nutrient transport and 
autophagy; involved in meiosis [37]. HOS2 is histone deacetylase and subunit of Set3 
and Rpd3L complexes; required for gene activation via specific deacetylation of ly-
sines in H3 and H4 histone tails; subunit of the Set3 complex, a meiotic-specific re-
pressor of sporulation-specific genes that contains deacetylase activity [37]. We ob-
serve that all of these targets are related to growth and division in some way.

We were able to demonstrate that the SPs followed a power-law distribution. This 
was not the case in the DC perhaps due to their relatively small sample size. Mean 
vertex degree was noticeably different between the SPs and DCs. It was more pro-
nounced in the TOR network, the shortest-path mean vertex degree being nearly 
double what it was in the DCs. This was even more noticeable between the TOTs, 
which was more than double. There was a large difference in node densities with the 
SPs having ones lower than the DCs. Between the RLS networks, this was far less pro-
nounced with the SP having half the node density of the DC. The TOR shortest-path 

Table 3. Some of the basic network variables for the original CRH, RLS, TOR and TOT networks and 
their corresponding shortest-path networks

Network Number
of nodes

Number
of edges

Vertex
degree
range

Node
density

Mean
Vertex
degree

Mean node
distance

Network 
diameter

CRH DC 28 70 1–8 0.18519 5 3.146 7
CRH SP 119 460 1–35 0.06552 7.7311 2.6 5
RLS DC 37 46 1–6 0.06907 4.383 2.7059 10
RLS SP 169 524 1–47 0.03691 6.2012 2.893 6
TOR DC 16 42 1–11 0.35000 5.25 1.942 4
TOR SP 331 1,500 2–110 0.02746 9.0361 2.855 5
TOT DC 76 158 1–11 0.05544 4.1579 5.774 13
TOT SP 558 2,467 1–110 0.01587 8.853 3.171 6

Fragmentation (DC) 0.59158
Fragmentation (SP) 0.51203
Clustering coefficient (DC) 0.20142
Clustering coefficient (SP) 0.04330
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node density was a one tenth of the DCs. The network diameter was similar for the 
TOR DCs and the SPs, yet for the RLS and TOTs the shortest-path diameter was half 
what it was in the DC.

Software for Network Analysis

Due to the fact that many networks have large numbers of nodes and connections, it 
is not possible to hand-calculate the various network descriptors that we have dis-
cussed. Over the past decade, a number of network analysis software packages have 
become available. Two of the most commonly used packages are Pajek, available at 
http://vlado.fmf.uni-lj.si/pub/networks/pajek/, and Cytoscape, which is available at 
http://www.cytoscape.org/. Another excellent package is NetworkX from Los Alamos 
National Laboratories. It can be downloaded at http://networkx.lanl.gov/index.html. 
All of these packages offer free downloads on numerous computation platforms and 
operating systems.

One of the challenges in understanding large complex networks, including biologi-
cal networks, is visualizing them. Both Pajek and Cytoscape offer network visualization 
tools. However, a number of other visualization tools are now available, and these are 
very powerful visualization software packages. CFinder, available at http://cfinder.org/ 
is a cluster and community software package designed for finding and visualizing dense 
groups of nodes in networks. Gephi, available at https://gephi.org, is an open graph vi-
sualization program that allows the user to perform exploratory data analysis on a giv-
en network, link analysis and generate high-quality printable network images. There 
are many other social network analysis software packages now available. The packages 
frequently allow the user to analyze biological networks as well as other network forms. 
An excellent discussion of available network analysis and visualization software may be 
found at http://en.wikipedia.org/wiki/Social_network_analysis_software.

Future Directions

Future directions for the research include adding additional yeast subnetworks that 
are believed to have a tie to aging processes. In addition, we will add networks that are 
believed to be unrelated to replicative aging processes. These unrelated networks will 
serve as control networks. For the TOT of direct interactions, proteins were labeled 
to show which group they belonged to (TOR, heat-shock, RLS, or shared). It would 
be helpful to do the same for the TOT of shortest-path connections.

We will also take what we have learned about studying yeast networks, and use this 
to study protein-protein interaction networks in other species, such as C. elegans, Dro-
sophila melanogaster and eventually in humans. By using C. elegans, a wider variety of 
genes that have an effect on aging can be studied, i.e. genes such as the FOXO gene. 
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However, because it is multicellular, the C. elegans genome would be more complex, 
having about 20,000 genes as opposed to only 6,000 in yeast. Homologs to yeast genes/
proteins in other organisms can be investigated as possible important genes/proteins. 
Using human interaction networks allows the study to be directly related to the study 
of aging in humans, which is the ultimate goal. With an expanded yeast network, it will 
be easier to show links between existing data and studies of other model organisms. It 
might also help guide decisions on which networks to study in C. elegans and humans.

Closing Thoughts

In the previous sections, we introduced a large number of concepts and constructs 
that are based upon the premise that biological systems can be represented as network 
graphs. These concepts described how network nodes were interconnected and the 
consequences of certain specific classes of connectivity and network structure. At the 
1982 Palo Alto American Mathematical Society meeting, Witten presented a paper on 
representing aging using the model of network decay. Of course, in those days, net-
work analysis was not what it is today, and we had next to nothing of the genomic and 
network level data that we now have. However, even then, it was natural to consider 
aging as the temporal decay of a hypothetical organismal ‘aging network’. How then 
may we extend these ideas to the study of aging?

While little is currently known about how aging-related networks evolve across the 
organism’s life span, it is reasonable to assume that two possible changes can occur; in-
activation of active nodes/activation of inactive nodes and loss of connectivity/increase 
in connectivity. How or why nodes become inactive or edges disappear is irrelevant 
here; just that they do. It turns out that the structure of small-world networks, due to 
their hub connectivity, makes them vulnerable to targeted attacks aimed at specific 
hubs. Attacks that knock out essential genes are knocking out the life span network be-
cause the organism dies when an essential gene is knocked out. Thus, essential genes 
are critical hub genes [2, 38, 39]. Small-world neural networks have been shown to ex-
hibit short-term memory capability. This suggests that memory decay, such as that seen 
in Alzheimer’s disease may be related to decay of brain neural network structure in such 
a way as to remove the small-worldness property of the memory network. Understand-
ing patterns in network decomposition could lead to potential early AD detection and 
to potential pharmaceutical intervention at earlier points in the disease course.

Connectivity gain and loss also have implications when it comes to discussing the 
hierarchical modularity of aging-related network architectures. Loss of connectivity 
through inactivity of a node or through loss of an edge could unlink an entire module of 
importance. Thus, nodes that connect modules within a larger network are critical to the 
functioning of the network. Questions around the role of evolutionary processes in the 
development of network architectures of various organisms may be of importance in 
understanding how network architectures related to aging processes are constructed. 
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Why are some components of a network redundant while others are not (see also all of 
the citations on reliability theory)? What is the role of backup subnetworks? What is the 
importance of robustness and resilience? Why are some networks more robust to attack 
[46–50], less fragile than others or more frail [40–44]? How do we balance the need to 
adapt and evolve with robustness [45]? What, if any, is the association of life span with 
network architecture? These and many other questions remain to be answered.
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