Vitamin D deficiency and low dietary calcium intakes act synergistically in increasing the prevalence of rickets in communities where both problems are present.

Key insights
An important role of vitamin D is to modulate the body’s ability to adjust to changing calcium supply and demand. This is particularly important in developing countries, where calcium intakes are low. For dietary calcium, the consumption of dairy products was found to be a major source of this mineral. Although many children in developing countries do not meet the recommended daily intake of calcium, a large proportion of them are considered to have good bone status.

Current knowledge
Nutritional rickets is a global public health problem, affecting mainly infants and adolescents in developing countries. In some countries, vitamin D deficiency is the cause, resulting from social customs that limit sunlight exposure. In other countries where sunlight exposure is not a problem, low dietary calcium underlies the onset of rickets in older toddlers and children. The negative effects of calcium and vitamin D deficiency may have varying influences depending on genetic background and ethnic origin.

Practical implications
The factors that contribute to low vitamin D status in infants and children include overcrowding, atmospheric pollution, and clothing customs. The infant and adolescent age groups are at highest risk, particularly girls. Calcium homeostasis can effectively be adapted to low calcium intakes even with diets which are thought to impair intestinal calcium absorption. However, very low calcium intakes (below 200 mg/day) greatly increase the risk of rickets and osteomalacia. Calcium supplements should be used with caution, as they do not appear to improve growth and may have adverse effects on height, although there are benefits on bone mass.

Recommended reading
Calcium and Vitamin D Metabolism in Children in Developing Countries

John M. Pettifor

MRC/Wits Developmental Pathways for Health Research Unit, Department of Paediatrics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa

Key Messages

- In most developing countries, dietary calcium intakes of children and adolescents are approximately 1/3 to 1/2 of the recommended intakes for children living in developed countries, yet the majority of children adapt well to these lower intakes and appear to suffer no adverse effects.
- Nutritional rickets remains a public health problem among infants, young children, and adolescents in many developing countries, even in those lying within the tropical and subtropical regions of the world. Although vitamin D deficiency remains the commonest cause due to overcrowding, atmospheric pollution, and lack of sunlight exposure of lactating mothers and their infants, increasing evidence indicates that in some countries, children on very low calcium intakes may develop dietary calcium deficiency rickets.

Despite many of the countries lying within the tropics and subtropics, overcrowding, atmospheric pollution, a lack of vitamin D-fortified foods, and social customs that limit skin exposure to sunlight are major factors in the development of vitamin D deficiency. Low dietary calcium intakes are typically observed as a consequence of a diet limited in dairy products and high in phytates and oxalates which reduce calcium bioavailability. Calcium intakes of many children are a third to a half of the recommended intakes for children living in developed countries, yet the consequences of these low intakes are poorly understood as there is limited research in this area. It appears that the body adapts very adequately to these low intakes through reducing renal calcium excretion and increasing fractional intestinal absorption. However, severe deficiencies of either calcium or vitamin D can result in nutritional rickets, and low dietary calcium intakes in association with vitamin D insufficiency act synergistically to exacerbate the development of rickets. Calcium supplementation in children from developing countries slightly increases bone mass, but the benefit is usually lost on withdrawal of the supplement. It is suggested that the major effect of calcium supplementation is on reducing the bone remodelling space rather than structurally increasing bone size or volumetric bone density. Limited evidence from one study raises concerns about the use of calcium supplements in children on habitually low calcium intakes as the previously supplemented group went through puberty earlier and had a final height several centimetres shorter than the controls.

© 2014 S. Karger AG, Basel

Key Words
Dietary calcium · Vitamin D · Requirements · Children · Developing countries · Vitamin D deficiency · Rickets

Abstract
Low dietary calcium intakes and poor vitamin D status are common findings in children living in developing countries.
Introduction

In the osteoporosis literature, considerable emphasis has been placed on the importance of ensuring that peak bone mass is optimised in early adulthood so as to reduce the prevalence of low bone mass and osteoporotic fractures in the postmenopausal period in women and in elderly men. Until recently, this concept has been considered to be of importance only for high-income countries, where the proportion of elderly in the population has been increasing progressively and the cost of managing osteoporosis and its complications is an ever increasing burden on the health system, which in the USA was estimated to be 17 billion USD in direct costs in 2006 [1]. However, attention is now being drawn to the likely dramatic escalation of osteoporosis prevalence in low- and middle-income countries, where lifestyle and demographic changes will result in the proportion of all fractures rising from 50 to 75% from 1990 to 2050 [2].

Attention is now being drawn to the likely dramatic escalation of osteoporosis prevalence in low- and middle-income countries, where lifestyle and demographic changes will result in the proportion of all fractures rising from 50 to 75% from 1990 to 2050.

Although genetics plays an important role in determining peak bone mass, environmental factors, such as nutrition [3] and physical exercise (especially in late childhood and early puberty) [4], are considered to be important modulators of an individual’s genetic potential. In countries where malnutrition is prevalent, it is clear that many factors, such as impaired growth, and nutrient deficiencies, such as protein and trace element deficiencies, also play important roles in determining bone mass and health in children [5]. Many researchers, however, believe that overall dietary calcium intake and vitamin D status are the two major nutritional factors influencing optimal bone development in childhood and adolescence [6]. In this review, I shall summarise the physiology and synergy between vitamin D and calcium, and discuss vitamin D status and dietary calcium intakes in developing countries and the effects of low vitamin D status and calcium intake on child health and development.

The Physiology of Vitamin D and Calcium

Vitamin D

Although vitamin D is considered to be a major player in bone development and homeostasis, it has other physiological roles as well. Over the past few decades, researchers have suggested that vitamin D may have other actions besides those associated with bone and mineral homeostasis. These non-classical actions of vitamin D include possible roles in immune function, autoimmune diseases, and allergy, certain cancers, such as breast, colon, and prostate, cardiovascular and metabolic diseases, and neurological disorders, such as multiple sclerosis [7]. Although these possible roles have created much excitement, a number of researchers and committees have cautioned that, although the results are of interest, empirical research to support these claims is limited [8, 9]. I shall thus not discuss these possible roles any further.

Clinical and animal studies have highlighted the central role that vitamin D plays in the physiology of mineral homeostasis by maintaining normocalcaemia through optimising intestinal calcium absorption, even at the expense of skeletal mineralisation [10]. In vitamin D-replete children and adolescents on adequate calcium intakes, approximately one third of the dietary calcium intake is absorbed, although the variation is large [11]. In vitamin D deficiency, calcium absorption has been reported to be reduced to 10–15% [12], but is not negated completely. Vitamin D-dependent intestinal calcium absorption is an important process when calcium intakes are low, as absorption is mainly transcellular and dependent on active transport involving vitamin D-dependent TRPV6 and calmodulin-D9k in intestinal mucosal cells [13]. Passive paracellular calcium transport plays a major role in calcium absorption when calcium intakes are high, and probably in early neonatal life as well. The mechanism for the increased intestinal calcium absorption that occurs during pregnancy appears to be independent of vitamin D, but possibly dependent on oestrogen [13].

Thus, vitamin D status is a key factor influencing the body’s ability to adjust to changing calcium supply and demand, as for example may occur at the time of weaning when dietary calcium intake may fall or during the adolescent growth spurt when calcium accretion rates into bone are maximal. This role of vitamin D is of particular importance in developing countries where calcium intakes are characteristically low and of reduced bioavailability (see later).
The last 20 years have seen considerable discussion around the definitions of vitamin D sufficiency and deficiency. There is general agreement that serum 25-hydroxyvitamin D (25-OHD) concentrations are an appropriate reflection of both dietary intake and cutaneous synthesis of vitamin D, but there is still only limited consensus as to what should be considered an appropriate cutoff of 25-OHD to differentiate an adequate vitamin D status from an inadequate one. Much of the discussion centres round whether or not the cutoff should take into consideration the possible non-classical actions of vitamin D. In 2011, the Institute of Medicine of the National Academy of Sciences in the USA released its Committee’s report on the dietary reference intakes for vitamin D and calcium, in which vitamin D sufficiency was defined as a 25-OHD concentration of >50 nmol/l, while the risk of vitamin D deficiency was considered to increase when 25-OHD was <30 nmol/l [9, 14]. In the same year, the Endocrine Society issued its clinical guideline for the evaluation of vitamin D deficiency [15], in which it defined 25-OHD <50 nmol/l as deficient and ≥75 nmol/l as optimal. A number of specific paediatric guidelines have also been published. The European Society for Paediatric Gastroenterology, Hepatology and Nutrition has highlighted the difficulty in defining a cut-point for vitamin D deficiency but recommends 25-OHD >50 nmol/l as indicative of sufficiency and <25 nmol/l as indicative of severe deficiency [16]. The American Academy of Pediatrics has defined deficiency as 25-OHD ≤37.5 nmol/l and sufficiency as 50–250 nmol/l [17]. From a paediatric bone health perspective, it is frequently considered that 25-OHD of <25 or 30 nmol/l is necessary before disturbances in bone health are seen [18].

A number of studies have estimated the prevalence of vitamin D deficiency in different countries around the world using a variety of different cutoffs for 25-OHD to diagnose deficiency [6, 18–20]. Prentice’s [18] paper highlights the effect of using different 25-OHD cutoffs on the prevalence of vitamin D deficiency in the UK. Across adults’ and children’s age ranges, the prevalence varied between 20 and 50% if a cutoff of 50 nmol/l was used, while the prevalence was 5–20% if 25 nmol/l was used. Utilising 50 nmol/l as the cutoff globally, it has been estimated that over 1 billion people would be classified as being vitamin D deficient, and would result in the majority of countries having a large proportion of their populations being classified as such [20]. However, there is little information on vitamin D status from most developing countries. Arabi et al. [19], looking specifically at data from developing countries, were only able to find information on 23 of 144 such countries. Despite many of the developing countries lying within the tropical and subtropical zones and thus being exposed to UV radiation around the year, the authors concluded that hypovitaminosis D (varying cut-points were used, but the majority of studies used <37.5 or <25 nmol/l) was prevalent in most areas of the world, especially in the Middle East and North Africa, China and South Asia (India, Pakistan, and Bangladesh). There are, however, a number of caveats that must be highlighted, the most important of which being that the studies only represented a small proportion of all developing countries and, therefore, may not typify the picture in all such countries and that the paediatric age ranges were generally poorly covered. Very few studies have been conducted among children in Africa, but studies from the Gambia [18] and Nigeria [21] on the west coast and South Africa [22] have indicated that vitamin D deficiency is uncommon in ambulatory children and adolescents, but information on early infancy is limited. Studies from Ethiopia [23] and Sudan [24] suggest that infantile rickets due to vitamin D deficiency is not uncommon and is associated with malnutrition, limited sunlight exposure, and prolonged breastfeeding. Traditional indigenous ethnic groups within Tanzania were found to be vitamin D replete with 25-OHD concentrations well above 50 nmol/l [25]. In general, the factors responsible for a low vitamin D status among infants and children in developing countries reflect inadequate skin exposure to UV radiation as a consequence of overcrowding, atmospheric pollution, little opportunity to play out of doors, and clothing customs, ensuring extensive skin coverage.

If reports on vitamin D deficiency rickets/osteomalacia are used as a guide to assess the age groups at risk of vitamin D deficiency, then in most countries, it is the infant and adolescent age groups who are most at risk. In the adolescent age group in many developing countries, it is girls who are most prone to vitamin D deficiency due to cultural practices which see greater skin coverage by clothing and reduced outside activities by girls. Children in most developing countries are almost exclusively de-

Utilising 50 nmol/l as the cutoff globally, it has been estimated that over 1 billion people would be classified as being vitamin D deficient.
dependent on the cutaneous synthesis of vitamin D rather than on dietary intake, as very few available foods (besides oily fish) in these regions naturally contain significant amounts of vitamin D or are vitamin D fortified. Breastfed infants in developing countries are also largely dependent on UV radiation to ensure their vitamin D status, as the vitamin D status of pregnant and lactating women is frequently poor resulting in low 25-OHD concentrations in the neonate and low vitamin D content in breast milk [26]. Studies have suggested that lactating mothers may need vitamin D supplements as high as 400 IU/day to cross in breast milk to ensure infants are supplemented with 400 IU/day, which are mainly derived from vegetable sources, as dairy product consumption is limited once weaning occurs, except possibly in more affluent communities [37].

Recommended dietary calcium intakes vary between different countries, but using the recent recommendations from the Institute of Medicine of the National Academy of Sciences, USA, as a guideline, its recommended daily allowance (RDA) for children increased between the ages of 1 year and 18 years from 700 to 1,300 mg/day and its estimated average requirement increased from 500 to 1,100 mg/day [38]. Clearly, many children in developing countries do not meet these recommendations, yet the majority would be considered healthy, as far as bone status is concerned.

How Do Children Adapt to Low Calcium Content of Diets?

As mentioned earlier, calcium homeostasis is maintained mainly by controlling the gastrointestinal absorption of calcium. Typically, calcium absorption at recommended intakes is an active process, dependent on an adequate vitamin D status and intact renal and parathyroid function. Fractional calcium absorption is inversely proportional to calcium intake, but is also greater in African-American than in white American pre- and postmenarchal girls (39 vs. 30 and 44 vs. 25%, respectively, at intakes of approximately 900 mg/day) [39]. A few absorption studies have been conducted in children in developing countries, where calcium intakes are less than half those of children living in developed countries. In Nigeria, Thacher and Abrams [40] found a mean fractional absorption of 61% in children between 2 and 14 years of age with a mean calcium intake of 227 mg/day. This fractional absorption is very similar to that of 63.1% reported for Chinese children on low calcium intakes of 359 mg/day [41]. These values are thus approximately double those of children on calcium intakes close to the RDA. Children on low calcium intakes also reduce their renal excretion of calcium, but the obligatory loss of calcium from the gastrointestinal tract is similar in those on normal and low calcium intakes. It thus appears that children on habitually low dietary calcium intakes adapt very effectively to these lower intakes, probably through stimulation of renal CYP27B1 (1α-hydroxylase) and increased produc-

Table 1. Calcium intakes in children in a number of developing countries around the world

<table>
<thead>
<tr>
<th>Country</th>
<th>Age, years</th>
<th>Calcium intake, mg/day</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenya (rural)</td>
<td>7</td>
<td>316 ± 11</td>
<td>29</td>
</tr>
<tr>
<td>South Africa (rural)</td>
<td>3–5</td>
<td>282 ± 144</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>8–10</td>
<td>338 ± 170</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13–16</td>
<td>378 ± 279</td>
<td></td>
</tr>
<tr>
<td>Bangladesh (rural)</td>
<td>2–4</td>
<td>142 ± 6</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>2–4</td>
<td>172 ± 3</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>10–18</td>
<td>314 ± 194 (low SES)</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>713 ± 241 (high SES)</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td><5</td>
<td>123 ± 130</td>
<td>34</td>
</tr>
<tr>
<td>China</td>
<td>10–0.4</td>
<td>433 ± 170</td>
<td>35</td>
</tr>
<tr>
<td>Brazil</td>
<td>1–6</td>
<td>728–763</td>
<td>36</td>
</tr>
</tbody>
</table>

SES = Socioeconomic status. 1 Calcium intakes are given as the mean, with or without the standard deviation. If a range is shown, it implies that there was a range of means for the age group quoted.
tion of 1,25-(OH)₂D. What is not known, however, is whether this is only achieved at higher circulating 25-
OHD concentrations than are required by children on higher calcium intakes. Further, it is unclear at what level
of calcium intake bone mass becomes negatively affected, and if it does, whether it is more likely to occur when bone
accretion is maximal during the period of peak height ve-
locity during puberty. Although calcium supplementa-
tion of diets has been shown to increase bone mass mar-
ginally in children, the effects are marginal and generally
only maintained during supplementation [42]. This ef-
effective adaptation of calcium homeostasis to low calcium
intakes is achieved on diets frequently high in phytates
and oxalates which are thought to impair intestinal cal-
cium absorption in humans [43].

Nutritional Rickets in Developing Countries

As discussed earlier, nutritional rickets is a major pub-
lic health problem affecting mainly infants and adoles-
cents in many developing countries, even among those
living within tropical or subtropical regions. In a number
of these countries, such as Algeria, Egypt, Turkey, and the
Middle East, vitamin D deficiency has been clearly estab-
lished as the cause, resulting from social customs which
limit skin exposure to sunlight and UV radiation of both
the mother and her breastfed infant, and of adolescent
girls, in particular.

In other countries, such as India [44], Bangladesh, Ni-
ergia, and South Africa, reports have highlighted the role
that low dietary calcium intakes play in the pathogenesis of
rickets in generally older toddlers and children, in whom
sunlight exposure is not limited. In all four countries, cal-
cium intakes of those with rickets have been estimated to
be approximately 200 mg/day. Although serum 25-OHD
concentrations in affected children are lower than those in
control subjects, the mean values are generally above 30
nmol/l, which is higher than those found in typical vitamin
D deficiency. Another characteristic biochemical feature is
the marked elevation of 1,25-(OH)₂D concentrations prior
to treatment (fig. 1). Concentrations are generally 1.5–2
times higher than those found in age-matched community
controls [45]. In a randomised controlled trial from Nige-
ria, children with rickets suspected of being due to dietary
calcium deficiency responded better to calcium alone or to
calcium and vitamin D supplements than to vitamin D
alone [46]. In India, the response of children with active
rickets to calcium supplements has been mixed, suggesting
that both vitamin D and calcium deficiency are causes of
rickets on the subcontinent [44, 47].

Bone Mass in Children Living in Developing
Countries

A question of considerable importance to children and
adolescents living in developing countries who have ha-
bitably low dietary calcium intakes is: ‘Is there any evi-
dence of deleterious consequences of these low calcium
intakes on bone mass accrual during childhood and ado-
lescence and therefore on peak bone mass attained in ear-
ly adulthood’?, as poor bone growth and impaired peak
bone mass might influence the incidence of fractures dur-
ing childhood and of osteoporosis and fragility fractures
in later life. As discussed in the previous section, there is
now good evidence that very low calcium intakes of ap-
proximately 200 mg/day may be associated with impaired
mineralisation and rickets, but is there evidence that children whose intakes are above these very low values but below the RDA have reduced bone mass?

The interpretation of bone mass measurements during childhood is difficult because of the close relationship that the measured bone mass variables of bone area, bone mineral density (BMD), and bone mineral content (BMC) have with body height, weight, and pubertal development [48]. Thus, during the assessment and interpretation of bone mass in children and adolescents, these variables need to be taken into consideration. Because of marked differences in growth rates and pubertal development in children living in developing communities compared to those in more affluent societies, reference data generated in developed countries need to be used and interpreted with caution when assessing bone mass of children and adolescents in developing communities. Numerous environmental and genetic factors play roles in determining bone mass in a growing child.

In South Africa, studies have consistently shown ethnic differences in bone mass between black and white children and pre- and postmenopausal women. Black children and women have greater bone mass at the femoral neck than their white peers, despite calcium intakes of the black participants being approximately half those of whites, nutrition in general being poorer in the black groups, and the black participants being shorter than their white peers [49, 50]. Bone mass at the lumbar spine and whole body was found to be similar in blacks and whites after adjusting for differences in body size. These results differ from those reported for African-American and non-black children in the USA, where African-American children have greater bone area and BMC at all measured sites (lumbar spine, hip, radius, and whole body) than non-black children [48]. In South Africa, despite the lower calcium intakes and the poorer growth of black children, they have a fracture incidence approximately half that of white children even though X-ray absorptiometry-measured bone mass is similar at most skeletal sites [51].

In the Gambia, calcium supplementation (1,000 mg/day for 5 days a week) of pre- or early-pubertal children, who had habitual calcium intakes of approximately 340 mg/day, resulted in a 4–5% greater increase in radial BMC than in controls over 12 months [52]. The authors concluded that this rise was a result of a reduction in bone remodelling space rather than an actual increase in bone size or a correction of the effects of dietary calcium deficiency. The calcium supplements had no effect on growth during the period of administration, but on follow-up, after stopping the supplementation, previously supplemented boys had advanced mid-adolescent height growth and an earlier peak height velocity. The net effect was an earlier cessation of growth in the previously supplemented boys, who at 23 years of age were 3 cm shorter than their non-supplemented peers [53]. No long-term effects on growth or pubertal development were noted in girls. Although these finding have not yet been confirmed in other studies, they do raise concern that altering habitual intakes through supplementation may have unintended adverse consequences.

Paediatric reference values for BMC and BMD have been published from a number of developing countries, including India [54] and China [55]. Total body BMC and BMD were found to be lower at most ages in Indian and Chinese children than in Caucasians from Europe, even after correcting for differences in height. The Indian participants had normal growth parameters (using Indian growth references) and had been carefully selected from private schools, thus excluding children from poorer communities who were more likely to be more undernourished, have poorer vitamin D status, and have lower dietary calcium intakes. A number of supplementation studies using both calcium and/or vitamin D have been conducted in children from India, where vitamin D deficiency is a frequent finding. Groups receiving calcium and vitamin D had greater increases in bone mass than those receiving vitamin D alone [33, 56]. In China, calcium supplementation in children, who had habitually low calcium intakes of 280 mg/day, resulted in an increase in appendicular bone mass [57] similar to that reported from supplementation studies of children on much higher calcium intakes. As has been reported from a number of other calcium supplementation studies, the bone mass advantage was lost within 18 months of stopping the supplement [58]. The calcium supplements had no effect on growth.

Conclusions
Following weaning, children living in the majority of developing countries have habitual dietary calcium intakes between one third and a half of the recommended intakes for children in the developed world. For the ma-
majority of these children, there is little evidence to suggest that their mineral balance or bone mass is adversely affected by these low intakes, provided their vitamin D status in not compromised as well. There is, however, evidence that children on very low calcium intakes of approximately 200 mg/day or less may develop rickets and osteomalacia, which responds to treatment with calcium supplements alone. Further research is required to elucidate the various factors predisposing these children to rickets. Calcium supplementation in children from developing countries does not appear to improve growth and may in fact have adverse effects on final height. Bone mass increases during calcium supplementation, but most studies have found that the benefit is lost following cessation of the supplement.

Poor vitamin D status remains a major public health problem among infants, young children, and adolescents in many developing countries despite adequate sunshine and UV radiation. Overcrowding, atmospheric pollution, the lack of vitamin D-fortified food, and social customs which reduce sunlight exposure are major factors responsible for the high prevalence. Vitamin D deficiency and low dietary calcium intakes act synergistically in increasing the prevalence of rickets in communities where both problems are present.

Acknowledgement
The author’s research into calcium and vitamin D metabolism has been funded over many years by various grants from the South African Medical Research Council and the University of the Witwatersrand.

Disclosure Statement
The author has no conflicts of interest. No financial remuneration for writing this paper has been received.

References

