Palliative Endoscopic Treatment Options in Malignancies of the Biliopancreatic System

Jürgen Feisthammel Joachim Mössner Albrecht Hoffmeister

Division of Gastroenterology and Rheumatology, Department of Internal Medicine, Neurology and Dermatology, University Hospital of Leipzig, Leipzig, Germany

Keywords
Pancreatic cancer · Biliary tract cancer · Klatskin tumor · Endoscopy · Stent · Photodynamic therapy · PDT · Radiofrequency ablation · RFA

Summary
In most of the cases, pancreatic cancer and malignancies of the bile tract can only be treated palliatively. Endoscopy offers several methods for effective control of the symptoms in those situations. In pancreatic cancer, stenting of bile ducts enables a control of jaundice most of the time. Stenting of an obstructed duodenum can relieve symptoms of gastric outlet obstruction without the need for major surgery. In biliary tract cancer, stenting of the bile ducts can provide effective drainage of the biliary system. Photodynamic therapy and radiofrequency ablation can sometimes be a valuable tool in symptom control. This review tries to provide an overview on endoscopic palliative treatment options in pancreatic cancer and biliary tract cancer.

Introduction
In 2010, according to data of the German ‘Robert Koch-Institut’ (central federal institution responsible for disease control and prevention), there were about 16,000 patients with newly diagnosed pancreatic cancer and 5,300 patients with newly diagnosed cancer of the biliary tract (bile duct and gall bladder) in Germany. The majority of these tumors were adenocarcinomas [1].

In both types of cancer the only way of curing the disease is surgical resection. However, at the time of initial diagnosis the disease is resectable in only 15–20% of the cases. Most of the patients require palliative management. Usually the patients will receive cytostatic chemotherapy [2, 3].

Patients with biliopancreatic malignancies often have specific tumor-derived symptoms such as stenoses of the biliary tract or gastric outlet obstruction (GOO). In those cases, endoscopy can play an important role in the management of symptom control.

In the following, we will provide an overview of endoscopic treatment options in the management and palliative care of patients with biliopancreatic cancer.
Management of obstructive jaundice in patients with pancreatic cancer [5, 6].

Stents are usually quite successful in the treatment of patients with obstructive jaundice. Stent placement has a lower mortality and morbidity compared to surgery but entails more risks for stent occlusion, dislocation, and cholangitis [7, 8]. It is important to identify patients with jaundice due to impaired liver function (e.g. multiple liver metastases) and without ultrasonographic signs of obstruction of the large bile ducts as those patients usually do not benefit from biliary stenting.

An important question which has to be answered before stenting patients with obstructive jaundice is whether to use plastic stents (PS) or self-expandable metal stents (SEMS). The most important differences between both groups of stents are as follows: SEMS are larger in diameter compared to PS. This is the reason why SEMS have a longer duration of stent patency [8]. PS may get obstructed by sludge. Thus, PS have to be exchanged every 3 months to diminish the risk of ascending cholangitis. In cases of cholangitis ± cholestasis, SEMS do not require a scheduled exchange, albeit occlusion of uncovered SEMS due to tumor ingrowth occurs in patients with pancreatic cancer in up to 27% of the cases [9]. SEMS are more expensive than PS. The latter can be easily
this type of stent had a higher rate of complications compared to uncovered stents. Regarding overall survival there is no difference between covered or uncovered stents. Thus, uncovered stents are usually recommended [13].

Biliary stents are usually placed during endoscopic retrograde cholangiopancreaticography (ERCP). After major abdominal surgery or with duodenal obstruction, the ampulla of Vater sometimes cannot be reached by ERCP. In this case, percutaneous placement of SEMS by PTCD (percutaneous transhepatic cholangio drainage) technique may be helpful (fig. 2) [14].

In cases where a previously placed uncovered SEMS gets obstructed by debris or tumor ingrowth, a sweeping of the stent by means of an occlusion balloon can be helpful. If sweeping is not sufficient to relieve the obstruction, a placement of stents inside the obstructed SEMS is mandatory. In that case, PS or another SEMS can be applied (stent-in-stent technique) (fig. 3).

Sometimes it is a matter of discussion whether or not patients with resectable disease will benefit from biliary stenting prior to surgery. According to a recent study, patients with preoperative ERCP for biliary drainage had more complications as compared to patients treated by surgery alone [15]. Therefore, biliary drainage should only be performed in cases of cholangitis or in cases where surgery will be delayed. In those cases, the placement of a metal stent should be considered.

Gastric Outlet Obstruction

GOO is quite often caused by pancreatic cancer [16]. In most of the cases, GOO in patients with advanced pancreatic cancer is caused by direct compression or tumorous infiltration of the duodenum. GOO occurs in up to 25% of the patients, usually in a rather late tumor stage [17]. The patients suffer from nausea, vomiting, dehydration with impairment of electrolyte balance, and malnutrition, which are life-threatening conditions for patients with pancreatic cancer. The most important goal for patients with GOO is to restore the ability to eat.

In cases where pancreatic carcinoma proves to be unresectable during surgery, some surgeons perform gastroenterostomy (GE) to prevent duodenal obstruction. In 2009, a meta-analysis showed this procedure to be beneficial for the patients [18]. Apart from those cases with prophylactic GE, endoscopic placement of a SEMS is the treatment of choice in cases of tumor-derived duodenal obstruction. Usually, this procedure is able to solve the problem with at least partial relief of the symptoms.

Sufficient stenting of duodenal obstruction can be performed with covered or uncovered SEMS. While uncovered stents are more prone to tumor ingrowth with obstruction of the stent, they are less prone to dislocate compared to covered while SEMS without cover are difficult if not impossible to remove endoscopically. SEMS without cover usually do not migrate while PS sometimes dislocate or migrate causing jaundice and cholangitis with the need of replacing the stents [10].

PS are available from 7 to 11.5 French (Fr) in diameter and in lengths ranging between 5 and 15 cm. As early re-obstruction of the stents occasionally occurs when diameters of less than 10 Fr are used, stents of 10 or 11.5 Fr are mostly used in palliative care [11, 12]. The length depends on the position of the stenosis. SEMS for use in the bile ducts are almost always 30 Fr in diameter as smaller diameters tend to obstruct significantly faster [9]. SEMS are usually available from 4 to 10 cm in length.

The right choice of stent depends on the location of the obstruction, expected length of survival, and expertise of the physician [8]. As SEMS may not be removable it is necessary to have proven malignancy. If the diagnosis is unclear, PS should be used until staging is completed as these stents can be removed easily. In pancreatic cancer, the site of obstruction is often localized in the distal bile duct. In those cases placement of SEMS is often realizable. In palliative care, removability of stents is usually not necessary. Therefore, the stent of choice will be in most cases a SEMS without cover (fig. 1), as covered stents have the risk to migrate and dislocate [8]. In a study on 112 patients, covered and uncovered stents have been compared. This study showed a longer patency of covered stents due to less tumor ingrowth; however,
Bile Duct Cancer

Bile duct cancer is a rather rare malignant tumor of the biliary tract. It can occur anywhere along the biliary system. Biliary tract cancers are divided into intrahepatic and extrahepatic cholangiocarcinomas, cancers of the gallbladder, and cancers of the ampulla of Vater. While intrahepatic cholangiocarcinomas are only rarely causing obstructive jaundice, which is treatable by endoscopic procedures, obstructions caused from cancers at the hilus (Klatskin tumor), the extrahepatic bile ducts, the gallbladder, and the ampulla are usually relievable by endoscopic stent placement. About two-thirds of bile duct cancers are located at the hilum as so-called Klatskin tumors [20]. At the time of diagnosis about two-thirds of the tumors are unresectable [2].

Biliary Obstruction

Biliary obstruction is the major clinical complaint of patients with cancer of the biliary system. While intrahepatic cholangiocarcinomas are typically not causing obstructive jaundice, most of the patients with extrahepatic cholangiocarcinoma (i.e. Klatskin tumors) and gallbladder cancer suffer from obstructive jaundice. In general, the principles of stenting as stated above in the section about pancreatic carcinoma are also applicable in cases with bile duct cancer. However, there are also some differences to be found.

Biliary stents are used for bridging until surgery is performed; stents are also used in palliative care. In cases where staging is not yet completed and the need for surgery remains unclear, PS are typically used. In obstructions distal of the hilum, the treatment of choice is stenting with uncoated SEMS. Coated SEMS are increasing the risk of cholecystitis [8]. Stent placement in distal stenoses can usually be performed without major complications and rather rapidly provides sufficient drainage of the bile duct. In the case of hilar obstruction, endoscopic stenting often is technically more difficult. Standard-shaped SEMS cannot be placed at the hilum because the stent would only drain one half of the liver while the other half would not be drained sufficiently. PS are the treatment of choice in those cases. Up to 3 PS are commonly inserted to bridge the stenosis. In order to minimise the risk of early stent obstruction, stents of at least 10 Fr in diameter should be used. With 10 Fr stents, an exchange is needed every 3 months to prevent cholangitis. PS should also be used when the expected lifespan is shorter than 3–6 months. In these cases an exchange of the PS is not needed anymore. Furthermore, PS are more cost-effective than SEMS, with less risk for the patient.

Another well-known option for palliative treatment of biliary tract cancer is photodynamic therapy (PDT). To perform this procedure the patients need to receive photosensitizers...
like intravenous porphyrins about 48 h prior to a planned PDT procedure. PDT is done during ERCP by application of light (usually red laser light, wavelength depends on the type of photosensitizer) over an optical fiber placed inside the bile ducts next to the tumor stenosis. The applied light energy interacts with the photosensitizer causing cell death via generation of oxygen free radicals. Due to limited depth of penetration of light energy, this procedure is usually not feasible for curative intent [21]. PDT can only be performed in patients with bile duct stenoses which can be reached by fibers placed by either ERC or PTC. Gallbladder cancer cannot be treated by this technique. The typical patient who will benefit from this option has a Klatskin tumor. Stenting of the branches of the biliary tree which were treated by PDT is mandatory due to the risk of biliary obstruction caused by inflammatory edema after PDT. PDT is usually performed every 6 months. As special equipment is needed, PDT is not widely available.

Two randomized trials have been performed with PDT. Both studies showed significantly longer survival rates accompanied by an improved biliary drainage and improved quality of life. It is still not known whether the prolonged survival is due to improved biliary drainage when PDT is combined with stenting versus stenting alone or whether the additional inhibition of tumor growth by PDT plays any role. Reported complications of PDT are cholangitis and liver abscess [22, 23].

Another endoscopic option in the treatment of bile duct cancer is intraductal radiofrequency ablation (RFA). This procedure seems to be more easily available than PDT as less specific equipment is needed. An RFA catheter is inserted into the bile ducts via the working channel of the ERCP endoscope. To date, no prospective data are available. Recently published retrospective data suggest RFA to be successful and reliable. Important complications in two retrospective studies were liver infarction and hemobilia [24, 25]. 2 of 12 patients treated in one of the series died due to hemorrhagic shock. Hence, safety issues are linked to this treatment, and further studies have to address these safety issues. All the methods described here are palliative means, and none of them allows curing the patient. Despite recent studies showing promising effects of chemotherapy on the survival of patients with pancreatic cancer, treatment remains palliative in the majority of cases [28, 29].

Disclosure Statement

The authors disclose any sponsorship or funding arrangements relating to their research. All authors disclose any possible conflicts of interest.

References

1. Robert Koch-Institut: Krebs in Deutschland. www.rki.de/Krebs/DE/Content/Publikationen/Krebs_in_Deutschland/krebs_in_deutschland_inhalt.html?nn=2178942
Malignancies of the Biliopancreatic System: Palliative Endoscopic Treatment Options

