Original Paper

Involvement of Calcium, Reactive Oxygen Species, and ATP in Hexavalent Chromium-Induced Damage in Red Blood Cells

Rong Zhang, Yang Xiang, Qian Ran, Xiaojun Deng, Yanni Xiao, Lixin Xiang, Zhongjun Li

Department of Blood Transfusion, Department of Pharmacy, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China

Key Words
Hexavalent chromium (Cr6+) • RBCs • Eryptosis

Abstract
Aim: The aim of this study was to investigate the mechanisms of Cr6+-induced red blood cells (RBCs) damage. Methods: The effect of Cr6+ exposure on RBCs was evaluated by hemolytic rate and blood gas assays. After exposure to 20 μM Cr6+, the percentage of phosphatidylserine (PS)-exposing cells, intracellular Ca2+, reactive oxygen species (ROS), and ATP levels were evaluated, and cell morphology was observed. RBCs were exposed to Cr6+ in different Ringer solutions to investigate the role of changes of Ca2+, ROS, and ATP levels in eryptosis and morphology. Results: The Cr6+-induced damage of RBCs was dose-dependent. After a 6 h incubation with Cr6+, RBCs exhibited significant Ca2+ influx, ROS increase, ATP depletion, and PS exposure, but displayed no obvious change in morphology at this time point. After 24 h Cr6+ exposure, the RBCs decreased in size, appeared to be spike-like, and had decreased forward scatter. Inhibition of Ca2+ influx attenuated PS-exposure caused by 6 h Cr6+ exposure, but did not prevent 24 h Cr6+ exposure-induced morphological change in RBCs. Inhibition of rapid ATP consumption using adenine significantly ameliorated Cr6+-caused PS-exposure at 12 h, 24 h and 48 h, and prevented 24 h Cr6+ incubation-induced morphological change in RBCs. Conclusion: Cr6+ can lead to eryptosis. Ca2+ influx, increased ROS levels, and rapid ATP consumption are closely related to Cr6+-induced RBCs damage. Ca2+ influx plays an extremely important role in Cr6+-mediated toxicity.
Introduction

Chromium is prevalent in nature and is mainly distributed in rocks, soil, air, water, and living organisms. Chromium exists primarily in two oxidation states: trivalent chromium (Cr\(^{3+}\)) and hexavalent chromium (Cr\(^{6+}\)). Cr\(^{6+}\) compounds are the most common heavy metal pollutants that lead to occupational and environmental health hazards [1, 2]. Cr\(^{6+}\) can enter the human body in a variety of ways. Accumulation of Cr\(^{6+}\) can cause dermatitis and ulcers, resulting in damage to the liver, kidneys, heart, and reproductive organs, and it can even cause cancer [3-7]. Due to the genotoxicity and mutagenicity of chromium, the United States Environmental Protection Agency and the International Agency for Research on Cancer have recognized Cr\(^{6+}\) compounds as human carcinogens [8, 9].

In eukaryotic cells, Cr\(^{6+}\) crosses the cell membrane through SO\(_4^{2-}/HPO_4^{2-}\) channels and enters into cells in the form of chromate [10]. Reduction of Cr\(^{6+}\) to Cr\(^{3+}\) produces free radicals, superoxide anions, and hydroxyl free radicals, which may cause direct or indirect damage to cells [11, 12], including apoptosis, oxidative stress, and dysfunctions in Ca\(^{2+}\) mobilization, cell cycle regulation, and energy metabolism [13-16].

Suicidal death of erythrocytes (eryptosis) is a process similar to apoptosis in nucleated cells [17]. Studies have shown that Ca\(^{2+}\) influx, ATP depletion, and oxidative stress are the main triggers of eryptosis [18-21]. Studies have found that Cr\(^{6+}\) can be taken up via a general anion channel protein (band 3 protein) in red blood cells [22]. Lupescu and colleagues confirmed that Ca\(^{2+}\) influx and ATP depletion participate in Cr\(^{6+}\)-induced eryptosis, but the detailed mechanisms of this process require further research [23]. This study aimed to investigate if additional factors are involved in Cr\(^{6+}\)-induced eryptosis and to evaluate the roles of these factors in the eryptosis process.

Materials and Methods

RBCs preparation

This study was approved by the Medical Ethics Review Committee of the Second Hospital Affiliated with the Third Military Medical University. Written informed consents were obtained from all human subjects involved in this study. Fresh (stored no more than 24 h) and leukocyte-free RBCs were obtained from healthy donors provided by the Chongqing Blood Center. The RBCs hematocrit was adjusted to 0.4% using Ringer solution (125 mM NaCl, 5 mM KCl, 1 mM MgSO\(_4\), 32 mM N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid (HEPES), 5 mM glucose, and 1 mM CaCl\(_2\); pH 7.4) before incubation with hexavalent chromium (Cr\(^{6+}\); potassium dichromate, Aladdin, USA) at 37°C for 6, 12, 24, or 48 h. Ca\(^{2+}\)-free Ringer solution was made using 1 mM glycol-bis-(2-aminoethylether)-N,N,N',N'-tetraacetic acid (ethylene-glycol-tetraacetic acid, EGTA) as a substitute for 1 mM CaCl\(_2\). Adenine- and NAC (N-acetylcysteine) -Ringer solutions were made by adding 1.04 mM C\(_5\)H\(_5\)N\(_5\) (Sangon, China) and 2 mM N-acetylcysteine (Sigma, USA), respectively.

Hemolytic rate measurement

RBCs were incubated with Cr\(^{6+}\) at gradient concentrations of 1.25, 2.5, 5, 10, 20, 40, 80, and 160 μM at 37°C for 48 h. Deionized water and Ringer solution were used as positive and negative controls, respectively. The incubation mixture was centrifuged at 10,016 g for 3 min, and the supernatant was collected for spectrophotometry. The absorbance (A) analysis wavelength was 570 nm with a reference at 655 nm. All experiments were conducted in triplicate in one donor's RBCs and were repeated at least three times in three donors’ RBCs. The hemolytic rate was calculated with the following equation: \([\frac{A_{\text{sample}} - A_{\text{negative control}}}{A_{\text{positive control}} - A_{\text{sample}}}] \times 100\) [24].

Blood gas analysis

RBCs were incubated with 20 μM Cr\(^{6+}\) at 37°C for 48 h. The blood gas profile, including pH, pO\(_2\), pCO\(_2\), HCO\(_3^-\), K\(^+\), Na\(^+\), Ca\(^{2+}\), Mg\(^{2+}\), and Cl\(^-\), was analyzed using the Critical Care Xpress Blood Gas Analyzer (Nova, USA).
Percentage of phosphatidylserine (PS)-exposing cells and morphology of RBCs

The PS was detected by Annexin-V-FLUOS and the percentage of PS-exposing RBCs was determined by measuring Annexin-V-FLUOS fluorescence-positive cells. RBCs were incubated with 20 μM Cr⁶⁺ in the following conditions: Ringer solution, Ca²⁺-free Ringer solution, adenine-Ringer solution, and NAC-Ringer solution in a humidified incubator with 5% CO₂ at 37°C for 6, 12, 24, or 48 h. After incubation, RBCs were washed three times with PBS and resuspended in incubation buffer (HEPES buffer) and Annexin-V-FLUOS solution (Roche, Germany) at 20°C for 15 min under protection from light. The forward scatter (FSC) and Annexin-V-FLUOS fluorescence intensity were then analyzed in a FACS Calibur (BD, USA). Images were obtained using confocal microscopy (Carl Zeiss, 510 meta, Germany) with transmitted light and laser excitation. The excitation and emission wavelengths of flow cytometry and confocal microscopy were 488 and 530 nm, respectively. The percentage of PS-exposing RBCs was analyzed using Flowjo (Treestar, USA).

Measurement of Ca²⁺, ATP, and ROS

The Ca²⁺ concentration in RBCs was measured using Fluo-3/AM (Invitrogen, USA) and flow cytometry (FACS Calibur, BD, USA). After two washes in Ringer solution, RBCs were incubated in Ringer solution containing 5 μM Fluo-3/AM and 5 mM CaCl₂ at 37°C for 30 min, washed twice in Ringer solution containing 5 mM CaCl₂ and resuspended in Ringer solution. Fluo-3/AM-loaded RBCs were then incubated at 37°C for 30 min to allow complete de-esterification of intracellular Fluo-3/AM. The intracellular Ca²⁺ concentration was measured by determining Fluo-3 fluorescence intensity on a FACS Calibur (488 nm excitation and 530 nm emission) and the geometric means of fluorescence intensity were analyzed by Flowjo (Treestar, USA).

The ATP concentration was measured using an ATP Assay Kit (Beyotime, China). RBCs were washed twice in Ringer solution and added to the lysis buffer. Cell lysate was centrifuged at 12000 g for 10 min and supernatant was collected for ATP analysis. ATP samples were diluted at the following concentrations to make a standard curve of ATP: 3.90625, 7.8125, 15.625, 31.25, 62.5, 125, 250, and 500 μM. For ATP analysis, 100 μl ATP testing solution was added to each well of an enzyme-coated plate and after 5 min 100 μl supernatant was added to each well. The relative luciferase activity (RLU) was measured by Varioskan Flash Multimode Reader (Thermo Fisher, USA) and ATP concentration was calculated according to the standard curve.

ROS level was analyzed using the ROS Fluorescent Probe-DCFH (Beyotime, China) and a Varioskan Flash Multimode Reader (Thermo Fisher, USA). RBCs were washed in Ringer solution and incubated in 10 μM 2', 7'-dichlorofluorescin diacetate (DCFH-DA, Beyotime, China) in Ringer solution at 37°C for 30 min. After three washes in Ringer solution, the fluorescence intensity was measured on a FACS Calibur (488 nm excitation and 530 nm emission) and geometric means of fluorescence intensity were analyzed by Flowjo (Treestar, USA).

Statistics

All experiments were conducted in triplicate and were repeated at least three times. Mean values from at least three experiments were plotted and expressed as means ± SEM. Statistical analysis was performed using SPSS software v.18.0 (SPSS Inc., USA). A p-value less than 0.05 was considered as significant.

Results

Cr⁶⁺ dose-dependent hemolysis

According to United States Environmental Protection Agency, the total chromium concentration (including Cr³⁺ and Cr⁶⁺) in drinking water cannot exceed 100 μg/L (approximately 1.9 μM), as Cr⁶⁺ can cause dramatic RBCs membrane injury, eryptosis, and even hemolysis [25]. In this study, to evaluate Cr⁶⁺ toxicity in human red blood cells, the lowest concentration we tested was 1.25 μM, which is still within the safety range. For the hemolytic rate test, RBCs were incubated with Cr⁶⁺ for 48 h at the following concentrations: 1.25, 2.5, 5, 10, 20, 40, 80, and 160 μM. All samples showed different degrees of hemolysis, and the hemolytic rate displayed a Cr⁶⁺ dose-dependent pattern (Fig. 1). Incubation with 40 μM Cr⁶⁺ led to a hemolytic rate of greater than 5%. Statistical analysis revealed that the
Fig. 1. Dose-dependent effect of Cr\(^{6+}\) exposure on hemolysis in RBCs. Hemolytic activity of Cr\(^{6+}\) at different concentrations ranging from 1.25 to 160 μM for 48 h. Data represent the arithmetic means ± SEM (n = 9) of the percentage of hemolysis from three independent experiments. Deionized water and Ringer solution were used as positive and negative controls, respectively.

Fig. 2. Effects of a 24 h exposure of 20 μM Cr\(^{6+}\) on PS-exposure and morphological change in RBCs. (a) Percentage of Annexin-V-FLUOS-positive cells in Ringer solution in the absence or presence of Cr\(^{6+}\). Data represent the arithmetic means ± SEM (n = 9) of the percentage of Annexin-V-FLUOS-positive cells from three independent experiments. Blue and red bars indicate the absence (control) and presence of 20 μM Cr\(^{6+}\), respectively. *p<0.05 and **p<0.01 indicate significant differences compared to the absence of Cr\(^{6+}\). (b) Bright field images for cell morphology and fluorescence images for Annexin-V-FLUOS-positive cells. b1 and b2 indicate the absence and presence of 20 μM Cr\(^{6+}\), respectively. Scale bar = 10 μm.

The hemolytic rate was significantly higher in RBCs incubated in Ringer solution containing 20 μM Cr\(^{6+}\) than in RBCs incubated in Ringer solution without Cr\(^{6+}\) (4.37 ± 0.24% vs. 0.78 ± 0.12%; p<0.05). Therefore, we selected 20 μM Cr\(^{6+}\) as the dose for the following experiments. After 48 h incubation with 20 μM Cr\(^{6+}\), most of the measured blood gas parameters did not change significantly and only the Na\(^+\) and K\(^+\) content changed slightly, suggesting that Cr\(^{6+}\) has little influence on acid-base metabolism and O\(_2\) and CO\(_2\) binding capacities.
Zhang et al.: Hexavalent Chromium-Induced Suicidal Death in Red Blood Cells

Cr$^{6+}$-induced eryptosis

PS exposure is an important feature of eryptosis. To evaluate the effect of Cr$^{6+}$ exposure on PS-exposure, RBCs were incubated with 20 μM Cr$^{6+}$ for 6, 12, 24, or 48 h and were then subjected to flow cytometry analysis. A 6 h Cr$^{6+}$-exposure significantly increased the percentage of Annexin-V-positive cells compared to no Cr$^{6+}$ exposure (7.42 ± 0.16% vs. 5.83 ± 0.16%; p<0.01; Fig. 2a), and the percentage of PS-exposing RBCs was increased in an exposure time-dependent manner. Exposure to 20 μM Cr$^{6+}$ for 48 h resulted in 42.20 ± 1.88% of PS-exposing RBCs, which was significantly higher than the percentage when exposed to only Ringer solution (21.38 ± 2.26%; p<0.01). Images of Annexin-V-FLUOS-labeled RBCs were obtained immediately after a 24 h Cr$^{6+}$ incubation using confocal microscopy. Compared to the control cells (Fig. 2b1), RBCs exposed to 24 h Cr$^{6+}$ displayed apparent morphological changes, including dramatic collapses and spike-shaped cell membranes, and increased Annexin-V-FLUOS fluorescence (Fig. 2b2).

Ca$^{2+}$ influx and Cr$^{6+}$-induced eryptosis

Ca$^{2+}$ influx has been observed in eryptosis; it is caused by many physical and chemical factors. The intracellular Ca$^{2+}$ concentration was determined using the Ca$^{2+}$ indicator, Fluo-3/AM, and flow cytometry. Compared to the control, incubation with 20 μM Cr$^{6+}$ for 6, 12, 24 and 48 h significantly increased intracellular Ca$^{2+}$ level in RBCs by 1.16-, 1.08-, 1.14- and 1.18-fold, respectively (Fig. 3a). Although 6 h Cr$^{6+}$ exposure increased Ca$^{2+}$ influx, fluorescence...
Zhang et al.: Hexavalent Chromium-Induced Suicidal Death in Red Blood Cells

Fig. 4. ATP depletion and eryptosis induced by Cr⁶⁺. (a) Intracellular ATP concentrations after 6, 12, 24, and 48 h of exposure to 20 µM Cr⁶⁺. Blue and red bars indicate the absence (control) and presence of 20 µM Cr⁶⁺, respectively. Effects of adenine-Ringer solution on intracellular ATP concentration (b), and PS-exposing rate (c). (d) Cell morphology and Annexin-V-FLUOS fluorescence images. Blue, red, green, and purple bars represent the control, control plus adenine, Cr⁶⁺, and Cr⁶⁺ plus adenine, respectively. Data represent the arithmetic means ± SEM (n = 9) of the ATP concentration (a, b) or the percentage of Annexin-V-FLUOS-positive cells (c) in RBCs from three independent experiments. Scale bar = 10 µm. *p<0.05 and **p<0.01.

imaging revealed that Fluo-3-labeled RBCs displayed normal cell morphology (Fig. 3b1, b2).

We then blocked Ca²⁺ influx by exposing RBCs to Ca²⁺-free Ringer solution, and we observed PS-exposure and cell morphological changes after exposing RBCs to 20 µM Cr⁶⁺ at different time points. Detection of a Fluo-3-fluorescence signal showed that incubation in Ca²⁺-free Ringer solution prevented time-dependent Ca²⁺ influx in RBCs (blue and red in Fig. 3c). In the presence of 20 µM Cr⁶⁺, incubation in Ca²⁺-free Ringer solution inhibited Cr⁶⁺-induced Ca²⁺ influx at all tested time-points (purple in Fig. 3c). We further examined the effect of Ca²⁺ influx on PS exposure on RBCs. In the absence of Cr⁶⁺, RBCs incubated in Ca²⁺-free Ringer solution for 24 and 48 h showed significantly less PS-exposing cells compared to those incubated in Ringer solution (blue and red in Fig. 3d). In the presence of Cr⁶⁺, compared to RBCs incubated in Ca²⁺-containing Ringer solution RBCs incubated in Ca²⁺-free Ringer solution also showed significantly lower percentage of PS-exposing cells at the time points of 6 h, 24 h and 48 h (green and purple in Fig. 3d). These suggest that inhibition of Ca²⁺ influx reduced Cr⁶⁺-caused toxicity on PS exposure on RBCs. Although inhibition of Ca²⁺ influx reduced PS-exposing cells in the presence of 20µM Cr⁶⁺, apoptotic RBCs were still significantly higher than those in the control group in Ringer solution containing Ca²⁺ (purple and blue in Fig. 3d), suggesting that inhibition of Ca²⁺ influx did not completely block Cr⁶⁺-
caused toxicity. Imaging results showed that after 24 h Cr⁶⁺-exposure, compared to RBCs in Ringer solution (Fig. 3e3), although RBCs in Ca²⁺-free Ringer solution displayed less Annexin-V-FLUOS fluorescence-positive cells they still exhibited a collapsed and spike-like morphology (Fig. 3e4), suggesting that inhibition Ca²⁺ influx did not completely prevent Cr⁶⁺-induced morphological change in RBCs.

ATP depletion and Cr⁶⁺-induced eryptosis

ATP is important for maintaining normal RBCs morphology. Fast depletion of ATP is the major cause for RBCs collapse and spike-like shape. The ATP assay results showed that incubation with 20 μM Cr⁶⁺ for 6, 12, 24, and 48 h led to decreases of intracellular ATP levels to 56.73%, 38.81%, 18.99%, and 17.91% of the control group, respectively (Fig. 4a). The ATP depletion rate was rapidly increased throughout the incubation time. At 24 h, 20 μM Cr⁶⁺ exposure resulted in a significant decrease in ATP level below 25% of basal level, which is a critical point for RBCs rejuvenation [20]. Adenine is an important component of RBCs preservation and can be used to produce ATP in RBCs. To investigate the effect of ATP depletion on Cr⁶⁺-induced eryptosis, adenine was added to Ringer solution. ATP
concentration and the percentage of PS-exposing cells were evaluated in the presence or absence of Cr⁶⁺. In the absence of Cr⁶⁺, application of adenine significantly increased ATP concentrations in RBCs at 12 and 24 h (red in Fig. 4b). In the presence of Cr⁶⁺, compared to RBCs without adenine supply RBCs in adenine-Ringer solution showed significantly higher ATP concentrations at 6, 12, and 24 h by 1.18-, 1.78-, and 1.51-fold, respectively (green and purple in Fig. 4b), but their ATP levels were still lower than those in the control group (blue in Fig. 4b). This suggests that application of adenine partially restored Cr⁶⁺-induced rapid ATP depletion. In the presence of Cr⁶⁺, we found significantly less PS-exposing cells with adenine supply at 12, 24 and 48 h (purple versus green in Fig. 4c), although the percentage of PS-exposing cells were still significantly higher than those in the control group (blue in Fig. 4c). Consistent with PS exposure result, fluorescence images also showed that compared to the control group (Fig. 4 d1 and d2) 24 h Cr⁶⁺ exposure resulted in a biconcave disk structure and collapse in RBCs (Fig. 4 d3) and adenine supply prevented 24 h Cr⁶⁺ incubation-induced morphological change in RBCs (Fig. 4d4). All these suggest that adenine supply can reduce rapid ATP depletion in RBCs but it only partially reverse Cr⁶⁺-caused PS-exposure and morphological changes in RBCs.

ROS- and Cr⁶⁺-induced eryptosis
Cr⁶⁺ that entered into the RBCs was ultimately reduced to Cr³⁺, resulting in the production of ROS, a critical by-product. The ROS assay showed that a 6 h incubation with 20 µM Cr⁶⁺ significantly increased ROS level (10.70 ± 0.09 a.u. vs. 8.14 ± 0.05 a.u.; p<0.01; Fig. 5a). The effect of Cr⁶⁺ exposure on ROS levels was mitigated over time. Although longer incubation times increased ROS levels, the increase was significantly lower compared to the Cr⁶⁺-free treatment (Fig. 5a). This result suggested that Cr⁶⁺-induced oxidative stress in RBCs mainly occurred in the early phase of exposure.

NAC is a common antioxidant and can ameliorate oxidative stress induced by heavy metals and pathological changes in RBCs [26, 27]. To a certain extent, the NAC-Ringer solution attenuated the Cr⁶⁺-induced increase in ROS levels. After a 48 h Cr⁶⁺ exposure, cells incubated in the NAC-Ringer solution still showed significantly lower ROS levels compared to RBCs incubated in the Ringer solution (9.80 ± 0.19 a.u. vs. 14.40 ± 0.07 a.u.; p<0.01; Fig. 5b). No significant difference in the percentage of PS-exposing cells was detected between these two groups (45.31 ± 0.83% vs. 40.45 ± 1.37%; p = 0.311; Fig. 5c). After a 24 h Cr⁶⁺ exposure, a large amount of Annexin-V-FLUOS-positive RBCs exhibited obvious shrinking and a spike-like appearance (Fig. 5d).

RBCs volume in Cr⁶⁺-induced eryptosis
To evaluate the effects of Ca²⁺ influx, ATP depletion, and oxidative stress on Cr⁶⁺-induced RBCs volume reduction, RBCs were incubated in Ca²⁺-free Ringer solution, adenine-Ringer solution, and NAC-Ringer solution with or without Cr⁶⁺ for 48 h. Lupescu and colleagues...
reported that the forward scatter of RBCs exposed to 20 μM CrVI for 48 h was decreased [23]. Blocking the Ca2+ influx alleviated the cell volume reduction induced by CrVI, and additional adenine maintained the cell volume. However, NAC had no effect on the volume reduction induced by CrVI exposure (Fig. 6).

Discussion

CrVI has been identified as a human carcinogen. The chances of exposure to CrVI in everyday life are gradually increasing. Industrial production, medical materials, and environmental pollution, along with materials that we are exposed to in daily life, such as joint replacements [28], porcelain teeth [29], stainless steel cookware [30], or even groundwater pollution [31], all increase the risk of CrVI exposure. Although we have long realized that RBCs have a special affinity for CrVI [32], studies focusing on CrVI-toxicity in RBCs are scarce.

In this study, we found that a 48 h exposure of erythrocytes to 20 μM CrVI resulted in significant hemolysis and that 40 μM CrVI induced up to a 5% hemolytic rate. Moreover, the CrVI-induced hemolysis was dose-dependent. Additional studies on CrVI-induced eryptosis showed that the eryptosis characterized by PS-positive cells reached 42.2%, though 20 μM CrVI exposure for 48 h caused less than 5% hemolysis. Ca2+ influx, rapid ATP depletion, and increased ROS levels all contributed to CrVI-induced eryptosis. However, only inhibition of rapid ATP depletion using an adenine-containing solution ameliorated CrVI-induced eryptosis, but it had no effect on rescuing the cell morphological change. The NAC antioxidant did not reduce eryptosis or rescue cell morphology. All of these results suggested that Ca2+ influx, rapid ATP depletion, and increased ROS could play different roles in CrVI-induced eryptosis.

Ca2+ influx has long been considered the most critical factor in eryptosis [33, 34]. A significant intracellular Ca2+ concentration increase is observed in eryptosis induced by almost all physicochemical factors and endogenous substances, including drugs [19, 35], metal ions [23], and diseases [36]. Increased Ca2+ concentration affects PS exposure through the activation of phospholipid scramblase [37]. Increased Ca2+ also influences RBCs morphology by affecting the skeleton flexibility and stability via the calcium-calmodulin complex (Ca-CaM) [38], the intracellular ion balance, and cell osmolality [39]. Under some circumstances, blocking Ca2+ influx can inhibit eryptosis in RBCs [40]. Thus far, no direct evidence has been reported that increased intracellular Ca2+ levels are vital to eryptosis. However, a study has reported the heterogeneity between the elevation of intracellular Ca2+ concentrations and increased eryptosis [41] where RBCs eryptosis occurs without the involvement of Ca2+ [20]. In this study, we observed that Ca2+ influx occurred within 6 h after CrVI exposure. As mature RBCs have no capacity to store Ca2+, using Ca2+-free Ringer solution completely blocked CrVI-induced Ca2+ influx, thereby resulting in a significant decrease in CrVI-induced eryptosis but no change in RBCs morphology and volume. Although Ca2+ influx plays a critical role in CrVI-induced eryptosis, this result suggested that other factors could also be involved in the process.

It has long been recognized that ATP is critical for the maintenance of RBCs biconcave disk morphology, excellent plasticity, and functional plasma membrane Ca2+ pumps (PMCA) [38, 42, 43]. Rapid ATP depletion is caused by excessive activation of the Ca2+ pump and has been considered a result of Ca2+ influx [38, 44]. A recent study reported that ATP depletion affects phosphorylation levels of the 4.1R and spectrin proteins, which are key proteins in the RBCs cytoskeletal network [45]. Depletion of the ATP level to below 25% that of normal RBCs eventually leads to cell membrane skeleton fracture and irreversible eryptosis of spike-shaped RBCs [20]. In our study, CrVI exposure rapidly depleted intracellular ATP, and a 12 h exposure of CrVI reduced the ATP level to 21.2% of the normal ATP level of RBCs. Additional adenine attenuated ATP depletion, reduced the percentage of PS-exposing cells, and maintained normal RBCs morphology and volume, thereby suggesting that the
intracellular ATP level is important in Cr⁶⁺-induced eryptosis. According to previous reports, increased ROS may be a major mechanism mediating Cr⁶⁺-induced injury in RBCs and other karyocytes [14, 46, 47] and increased ROS levels are closely related to eryptosis [48]. We also found that Cr⁶⁺ exposure significantly increased RBCs ROS levels and PS-exposing cells. However, reduced ROS levels via additional NAC in the Ringer solution showed no effect on rescuing eryptosis and morphological changes in RBCs, thus suggesting that the effect of increased ROS in eryptosis is not preventable.

In conclusion, although 20 μM Cr⁶⁺ exposure caused a less than 5% hemolytic rate, it resulted in dramatic increases in Ca²⁺ influx, ATP depletion, and ROS levels, leading to RBCs membrane shrinkage and PS exposure. Inhibition of Ca²⁺ influx and ATP depletion can ameliorate eryptosis in RBCs to a certain extent. Moreover, reduced ATP depletion can maintain RBCs morphology in response to Cr⁶⁺ exposure, suggesting that ATP depletion may not be just a by-pass result of increased Ca²⁺ influx during the process of Cr⁶⁺-induced eryptosis. This result was consistent with the report that ATP is important for maintaining membrane dynamic equilibrium and cytoskeleton in RBCs [43, 45, 49]. The ROS toxicity effect on RBCs after Cr⁶⁺ exposure was not reversed by additional antioxidants.

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 81372918), the Chongqing Natural Science Key Project Foundation (CSTC2012JJB10029), and the Youth Scientist Foundation of Chongqing (CSTC 2013JCYJJQ10001).

Disclosure Statement

The authors have no conflicts of interest to declare.

References

Zhang et al.: Hexavalent Chromium-Induced Suicidal Death in Red Blood Cells