Pathological Correlates of White Matter Hyperintensities on Magnetic Resonance Imaging

Yong Soo Shima Dong-Won Yanga Catherine M. Roeb Mary A. Coatsb Tammie L. Benzingerb Chengjie Xiongb James E. Galvinc–e Nigel J. Cairnsb John C. Morrisb

aDepartment of Neurology, The Catholic University of Korea College of Medicine, Seoul, South Korea; bKnight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, Mo., and Departments of cNeurology, dPsychiatry and ePopulation Health, New York University Langone Medical Center, New York, N.Y., USA

Key Words
Small-vessel disease · Dementia · Neuropathology · Leukoaraiosis

Abstract

\textbf{Background/Aims:} We investigated the histopathological correlates of white matter hyperintensities (WMHs) in participants with Alzheimer’s disease (AD) or cerebrovascular disease, and in aged controls. \textbf{Methods:} We reviewed 57 participants who had neuropathology and in whom neuroimaging was done. In addition to AD pathology, cortical microinfarcts, lacunes, and cerebral hemorrhages were assessed. Small-vessel disease included arteriosclerosis and cerebral amyloid angiopathy. Postmortem brain tissue corresponding to regions of WMHs was investigated in 14 participants. The variables included: demyelination of the deep and periventricular white matter (WM), atrophy of the ventricular ependyma, and thickness of blood vessels. Partial Spearman’s rank test and linear regression analysis, adjusted for age at the clinical evaluation and the duration to death, were performed. \textbf{Results:} The severity of arteriosclerosis was correlated with the volume of periventricular hyperintensity (PVH) estimated by magnetic resonance imaging. Deep white matter hyperintensity (DWMH) volume was correlated with the presence of cortical microinfarcts and cerebral hemorrhages. The severity of the breakdown of the ventricular lining was correlated with PVHs, and DWMHs correlated with the severity of deep WM demyelination. The diameter of small blood vessels was not associated with WMHs. \textbf{Conclusion:} WMHs are consistent with small-vessel disease and increase the tissue water content. We found no association between WMHs and the thickness of small blood vessels.
Introduction

White matter hyperintensities (WMHs) appear as lesions of increased signal intensity on T2-weighted and fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI) sequences [1]. They are frequently observed in healthy older adults as well as patients with dementia, including those with Alzheimer's disease (AD). In healthy older adults, WMHs are mostly regarded as a normal aging phenomenon, but severe WMHs have been associated with loss of specific cognitive functions such as psychomotor speed [2], although the association is weak and inconsistent [3–5]. In patients with AD, some studies have indicated that WMHs have an additive effect on cognitive decline, whereas others could not confirm this association [6–8]. A possible explanation for the inconsistent and weak associations between WMHs and clinical symptoms is heterogeneity in the neuropathology [9, 10].

WMHs have been correlated with cerebrovascular risk factors including hypertension, diabetes mellitus, smoking, hyperlipidemia, and cardiovascular disease [11–13], and are generally considered to be of vascular origin. They have been associated with arterial disease including intimal hyperplasia, atherosclerosis, arteriosclerosis, and lipohyalinosis [14]. Arterioles penetrating from the pial surface arteries have limited collateral supply and may contribute to white matter (WM) ischemia [14]. When severe, these ischemic areas may become necrotic and cystic lesions resulting from complete infarcts. However, the etiology of most WMHs, which are nonnecrotic, is less clear. Underlying neuropathological findings including myelin pallor (axon loss), reduced oligodendroglia numbers, astrocytosis, and microvacuolation may suggest other mechanisms [15–19]. Candidates include focal loss of ependymal lining with demyelination and gliosis, allowing leakage of ventricular cerebrospinal fluid [16, 17], accumulation of interstitial fluid in the perivascular spaces [18], edema related to blood-brain barrier disruption [19], and inflammatory processes involving microglial cells [20, 21]. Some studies have failed to find any correlation between WMHs and neuropathology [22, 23]. The reasons for such disparate findings are unclear, but the difficulty in performing neuropathological studies of areas identified by imaging may have contributed to the variable data, together with variation in the selection criteria of cases and the selection of neuropathological variables.

To address these diverse findings, we investigated the histopathological correlates of WMHs in longitudinally assessed participants with well-defined advanced risk factors for cerebrovascular disease (CVD) and with dementia of the Alzheimer type (DAT), as well as in aged controls.

Methods

From December 1995 to November 2000, a total of 165 participants were enrolled in a longitudinal study at the Washington University School of Medicine [24] called the ‘Cognitive Change in Cerebrovascular Disease’ (1430653611A1) project, which included clinical assessments, brain MRI, and autopsies. The sample consisted of three cohorts: participants with advanced risk for CVD (n = 65), participants with DAT (n = 48), and healthy, cognitively normal volunteers (n = 52). Participants with advanced risk for CVD were recruited from subjects who had angiographic evidence of at least 50% stenosis of one or both common carotid or internal carotid arteries [carotid stenosis (CS)], who did not undergo carotid endarterectomy, and who were local, St. Louis metropolitan-area participants enrolled in the Systolic Hypertension in the Elderly Program (SHEP) [25] with isolated systolic hypertension (systolic blood pressure between 160 and 219 mm Hg; diastolic blood pressure <90 mm Hg). Participants with DAT and healthy volunteers were also recruited from the Washington University Knight Alzheimer’s Disease Research Center. The diagnostic criteria for DAT were comparable with those for ‘probable AD’ according to the National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer’s Disease and Related Disorders Association (NINCDS-ADRDA) [26]. Experienced clinicians conducted semistructured interviews with each participant and with a
collateral source who was knowledgeable about the participant. A comprehensive health history was obtained from the collateral source and included the presence or history of hypertension, diabetes mellitus, stroke, or a transient ischemic attack. Trained registered nurses measured blood pressure at each annual visit using a manual cuff on the right or left arm. Exclusion criteria were the presence of any of the following: (1) other neurological disorders, including parkinsonism, Huntington’s disease, communicating hydrocephalus, infection, brain tumor, subdural hematoma, multiple sclerosis, seizure disorder, and cerebral trauma; (2) psychiatric disorders, including major affective disorder, schizophrenia, and alcoholism or other substance abuse, and (3) reversible dementias and other medical disorders that may impair cognition, including overmedication, impaired pulmonary, cardiac, renal, or hepatic function, as well as anemia, hypothyroidism, vitamin B12 deficiency, malignancy, and insulin-dependent diabetes mellitus. Within 3 months of clinical assessment, brain MRI was performed using a 1.5-tesla image scanner (Siemens, Erlanger, Germany).

Both during and after the study, participants were followed up annually at the Knight Alzheimer’s Disease Research Center. After death, brain autopsies were performed on 60 participants (18 with a CVD risk factor, 27 with DAT, and 15 healthy aged volunteers) as of December 2009. Of these 60 participants, FLAIR MRI was available for review from 57 participants (fig. 1).

Using the FLAIR images, a 3D-Slicer version 3.6 (3D-Slicer, Brigham and Women’s Hospital, Inc., Boston, Mass., USA) was used to measure the volume of WMHs semiautomatically. WMHs were further distinguished by location into periventricular WMHs (PVHs), which were directly adjacent to the lateral ventricles, and deep WMHs (DWMHs), which were located in the subcortical WM. To correct for differences in head size, WMH volumes (including PVH and DWMH) were normalized by the total intracranial volume. For comparison, as a proxy for brain atrophy on FLAIR MRI, the ventricular volume, a global measure of the entire ventricular system, was also measured and classified as the ventricular index (VI).

Histology and immunohistochemistry were undertaken using a standard protocol [27]. Briefly, histological stains included hematoxylin and eosin, Luxol-fast blue/Nissl, and a modified Bielschowsky silver impregnation. Immunohistochemistry was performed using anti-β-amyloid (10D5), phosphorylated τ (PHF1), and α-synuclein (LB509) antibodies. We used the Braak and Braak neurofibrillary tangle stage [28], and the presence of plaques was assessed according to the Consortium to Establish a Registry for Alzheimer’s
Disease (CERAD) guidelines [29]. The neuropathological diagnosis of AD was determined using the criteria of the National Institute on Aging and the Ronald Reagan Institute [30]. Vascular pathology was rated according to the criteria of the National Alzheimer's Coordinating Center [31] Neuropathology Manual version 9.1 (available at https://www.alz.washington.edu/WEB/forms-np.html). Large-vessel disease (atherosclerosis of the arteries of the circle of Willis, and of basilar, vertebral, and carotid arteries) and small-vessel disease (arteriolosclerosis and cerebral amyloid angiopathy (CAA)) were each rated on a 4-point scale (0–3). Additionally, the presence of large-artery cerebral infarcts, cortical microinfarcts, lacunes, cerebral hemorrhages, and subcortical arteriosclerotic leukoencephalopathy [32, 33] was recorded.

In addition, we studied areas of tissue corresponding to WMH regions in 14 participants. The severity of their WMHs was relevant to DWMHs scored ≥2 or PVHs scored 3 according to the Fazekas visual rating scale [34]. Microscopic features included demyelination of the deep and periventricular WM, atrophy of the ventricular ependyma, and the number and diameter of the blood vessels in the WM. Demyelination of the WM was scored subjectively, ranging from normal to severe demyelination (scale: 0–3). Atrophy of the ventricular ependyma was assessed semiquantitatively (scale: 0–3) (fig. 2). The number of blood vessels was categorized as 1 (<10), 2 (11–20) or 3 (>20 per ×10 microscope field).

Data analysis was performed using SPSS version 15.0 for Windows (SPSS, Inc., Chicago, Ill., USA). Subject demographics, neuropathology, and quantitative MRI measurements were compared between the three groups using the Kruskal-Wallis test and Fisher's exact test where appropriate. Quantitative MRI measurements were also compared using the Mann-Whitney U test between groups with and without the presence of specific pathological features. The relationships between clinical characteristics including MRI data and neuropathological measures were assessed using partial Spearman's rank test and linear regression analysis. All analyses were adjusted for age at clinical evaluation as well as duration to death. A p value <0.05 was considered significant.

Results

Demographic Data

Data from 57 participants (31 males and 26 females) were reviewed in this study. At clinical evaluation, there were 14 controls, 17 were at advanced risk for CVD (11 SHEP and 6
CS), and 26 had DAT. At the last visit with available FLAIR MRI, the mean age ± SD of the clinical enrollment groups was different (p < 0.001): 84.14 ± 5.99 years for the control group, 80.35 ± 8.93 years for the advanced risk for CVD group, 84.73 ± 3.29 years for the SHEP group, 72.33 ± 10.69 years for the CS group, and 74.88 ± 9.18 years for the DAT group. The duration from clinical evaluation to autopsy was 6.12 ± 3.26 years, and this did not differ between the clinical groups. After adjusting for age, the clinical dementia rating-sum of boxes (CDR-SB), the Hachinski ischemic scale (HIS), and history of hypertension were different between the groups (p < 0.001). Other characteristics including gender, years of education, and diabetes history were not significantly different between the groups. MRI parameters of WMHs (including PVHs and DWMHs) and the VI were not significantly different across the three groups (table 1).

The volume of WMH, PVH, and DWMH and the VI increased with the advancing age of the participants. The age of the participants correlated with WMHs (r = 0.36, p = 0.005), PVHs (r = 0.38, p = 0.004), DWMHs (r = 0.25, p = 0.058), and the VI (r = 0.32, p = 0.014). After adjusting for variables, the volumes of WMH and the VI were not significantly different across the three groups and were not associated with sex, years of education, CDR-SB, HIS, or the presence of hypertension or diabetes mellitus.

We further divided the participants into three groups according to their pathological findings. Participants who met the ‘high likelihood’ and ‘intermediate likelihood’ criteria of DAT according to the National Institute on Aging/Ronald Reagan Institute were designated as having ‘AD pathology’ (n = 30). The remainder were subclassified into the groups ‘low likelihood’ (n = 12) and ‘criteria not met’ (n = 15). After adjusting for age and the duration to death, the HIS score (‘AD pathology’: 0.47 ± 0.78, range 0–3; ‘low likelihood’: 2.25 ± 3.22, range 0–8; ‘criteria not met’: 2.73 ± 3.31, range 0–10; p = 0.001) and the history of hypertension (‘AD pathology’: n = 8, 26.67%; ‘low likelihood’: n = 9, 75.00%; ‘criteria not met’: n = 10, 66.67%; p = 0.008) at the clinical evaluation were different between the three groups, and the presence of cortical microinfarcts (‘AD pathology’: n = 3, 10.00%; ‘low likelihood’: n = 3, 25.00%; ‘criteria not met’: n = 9, 60.00%; p = 0.002) was also different at autopsy. The number of participants with cortical microinfarcts at autopsy was distributed as follows: controls, n = 5; CS, n = 3; SHEP, n = 2; AD, n = 5 at clinical enrollment. The volume of WMH was 6.64 ±

Table 1. Clinical characteristics and MRI findings of participants

<table>
<thead>
<tr>
<th></th>
<th>Control (n = 14)</th>
<th>Advanced risk for CVD total (n = 17)</th>
<th>SHEP (n = 11)</th>
<th>CS (n = 6)</th>
<th>DAT (n = 26)</th>
<th>p value<sup>1</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Age upon clinical evaluation, years</td>
<td>84.14±5.99</td>
<td>80.35±8.93</td>
<td>84.73±3.29</td>
<td>72.33±10.69</td>
<td>74.88±9.18</td>
<td><0.001</td>
</tr>
<tr>
<td>Age at autopsy, years</td>
<td>90.93±4.95</td>
<td>86.47±8.94</td>
<td>90.82±5.47</td>
<td>78.50±8.83</td>
<td>80.65±9.15</td>
<td><0.001</td>
</tr>
<tr>
<td>Duration to autopsy, years</td>
<td>6.79±2.52</td>
<td>6.12±4.09</td>
<td>6.09±4.04</td>
<td>6.17±4.58</td>
<td>5.77±3.06</td>
<td>0.694</td>
</tr>
<tr>
<td>Gender (M:F)</td>
<td>5:9</td>
<td>10:7</td>
<td>6:5</td>
<td>4:2</td>
<td>16:10</td>
<td>0.421</td>
</tr>
<tr>
<td>Education, years</td>
<td>15.07±3.20</td>
<td>13.18±2.77</td>
<td>13.36±2.38</td>
<td>12.83±3.60</td>
<td>13.04±2.88</td>
<td>0.362</td>
</tr>
<tr>
<td>Hypertension history</td>
<td>6 (42.86)</td>
<td>15 (88.24)</td>
<td>11 (100.00)</td>
<td>4 (66.67)</td>
<td>6 (23.08)</td>
<td><0.001</td>
</tr>
<tr>
<td>DM history</td>
<td>2 (14.29)</td>
<td>2 (11.76)</td>
<td>2 (18.18)</td>
<td>0 (0.00)</td>
<td>1 (3.85)</td>
<td>0.383</td>
</tr>
<tr>
<td>HIS</td>
<td>0.64±0.93 (0–3)</td>
<td>3.53±3.54 (0–10)</td>
<td>1.91±2.70 (0–9)</td>
<td>6.50±3.02 (2–10)</td>
<td>0.50±1.07 (0–5)</td>
<td><0.001</td>
</tr>
<tr>
<td>CDR-SB</td>
<td>0.07±0.18 (0–0.5)</td>
<td>1.26±2.50 (0–9)</td>
<td>1.14±2.66 (0–9)</td>
<td>1.50±2.41 (0–6)</td>
<td>5.15±2.92 (0.5–11)</td>
<td><0.001</td>
</tr>
<tr>
<td>MRI volume findings, mm<sup>3</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WMHs</td>
<td>9.39±10.56</td>
<td>13.66±14.49</td>
<td>10.08±7.32</td>
<td>20.20±22.03</td>
<td>8.21±10.68</td>
<td>0.329</td>
</tr>
<tr>
<td>PVHs</td>
<td>8.30±18.74</td>
<td>11.67±13.25</td>
<td>8.43±5.63</td>
<td>17.60±20.81</td>
<td>7.48±9.58</td>
<td>0.465</td>
</tr>
<tr>
<td>DWMHs</td>
<td>1.09±2.09</td>
<td>1.99±1.90</td>
<td>1.66±1.84</td>
<td>2.60±2.03</td>
<td>0.73±2.71</td>
<td>0.304</td>
</tr>
<tr>
<td>VI</td>
<td>64.43±25.75</td>
<td>67.15±41.18</td>
<td>73.22±49.45</td>
<td>56.03±17.56</td>
<td>61.41±32.57</td>
<td>0.879</td>
</tr>
<tr>
<td>TICV</td>
<td>1,441.40±118.68</td>
<td>1,594.65±143.60</td>
<td>1,492.81±158.75</td>
<td>1,526.34±121.28</td>
<td>1,456.68±169.75</td>
<td>0.657</td>
</tr>
</tbody>
</table>

Values are presented as means ± SD with ranges in parentheses or as numbers with percentages in parentheses. Age upon clinical evaluation and duration to death were adjusted for in the analyses. TICV = Total intracranial volume.

¹ Comparisons between the groups at clinical enrollment by using the Kruskal-Wallis test and Fisher’s exact test, where appropriate.
7.20 mm3 in those participants with AD pathology, 9.36 ± 11.35 mm3 in the ‘low likelihood’ group, and 16.80 ± 16.23 mm3 in the ‘criteria not met’ group (p = 0.06).

The neuropathology of the 57 participants enrolled in this study and their pathology are shown in figure 1. There were 23 participants with CVD (5 controls, 5 SHEP, 4 with CS, and 9 with DAT). Of these 23 participants, vascular disease was considered as the primary etiology of cognitive impairment in only 3 participants.

Neuropathology of WMHs
All 57 participants showed pathological evidence of vasculopathy. Arteriosclerosis of small parenchymal or leptomeningeal vessels was the most common finding (n = 56, 98.25%), followed by atherosclerosis (n = 52, 91.23%), CAA (n = 42, 73.68%), lacunes (n = 19, 33.33%), cortical microinfarcts (n = 15, 26.32%), cerebral hemorrhages (n = 8, 14.04%), large-artery cerebral infarcts (n = 6, 10.63%), and subcortical arteriosclerotic leukoencephalopathy (n = 2, 3.51%). These vascular pathologies were not different across the three groups according to the clinical presentation at enrollment. The presence of CAA was more frequent in participants with DAT (n = 22, 84.62%), although this did not reach significance (p = 0.071) (table 2). The distribution of vascular pathologies was not different between the 14 participants with WMHs and those without.

After adjusting for age and duration to death, the Braak and Braak neurofibrillary tangle stage was inversely correlated with the volume of WMH (r = −0.268, p = 0.023) and PVH (r = −0.276, p = 0.020). The burden of neuritic and diffuse plaques, according to the CERAD stages, showed a borderline association with WMH (r = −0.180, p = 0.092, and r = −0.175, p = 0.098). As the volume of DWMH increased, the score of diffuse plaques (r = −0.234, p = 0.041), and to some extent the score of neuritic plaques (r = −0.177, p = 0.096), decreased. In the linear regression analysis, the neurofibrillary tangle stage was associated with WMHs (p = 0.026) and PVHs (p = 0.022) (table 3).

DWMH volume was correlated with cortical microinfarcts (r = 0.259, p = 0.027) and cerebral hemorrhages (r = 0.344, p = 0.004). It was 0.84 ± 1.61 mm3 (total intracranial volume 1,469.98 ± 162.45 mm3) in participants without cortical microinfarct (n = 42) and 2.19 ± 3.65 mm3 (total intracranial volume 1,459.53 ± 115.37 mm3) in those with cortical microinfarcts.

Table 2. Findings of ischemic, hemorrhagic, and vascular pathology, according to the groups at the clinical enrollment (n)

<table>
<thead>
<tr>
<th>Vascular pathology</th>
<th>Control (n = 14)</th>
<th>CVD risk (n = 17)</th>
<th>DAT (n = 26)</th>
<th>p value1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>total</td>
<td>SHEP (n = 11)</td>
<td>CS (n = 6)</td>
<td></td>
</tr>
<tr>
<td>Large-artery cerebral infarcts</td>
<td>1 (7.14%)</td>
<td>3 (17.65%)</td>
<td>1 (9.09%)</td>
<td>2 (33.33%)</td>
</tr>
<tr>
<td>Cortical microinfarcts</td>
<td>5 (35.71%)</td>
<td>5 (29.41%)</td>
<td>2 (18.18%)</td>
<td>3 (50.00%)</td>
</tr>
<tr>
<td>Lacunes</td>
<td>5 (35.71%)</td>
<td>6 (35.29%)</td>
<td>3 (27.27%)</td>
<td>3 (50.00%)</td>
</tr>
<tr>
<td>Cerebral hemorrhages</td>
<td>1 (7.14%)</td>
<td>2 (11.76%)</td>
<td>1 (9.09%)</td>
<td>1 (16.67%)</td>
</tr>
<tr>
<td>Subcortical arteriosclerotic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>leukoencephalopathy</td>
<td>0 (0.00%)</td>
<td>1 (5.88%)</td>
<td>0 (0.00%)</td>
<td>1 (16.67%)</td>
</tr>
<tr>
<td>Atherosclerosis (of the circle of Willis)</td>
<td>14 (100.00%)</td>
<td>16 (94.12%)</td>
<td>10 (90.91%)</td>
<td>6 (100.00%)</td>
</tr>
<tr>
<td>Arteriosclerosis</td>
<td>14 (100.00%)</td>
<td>17 (100.00%)</td>
<td>11 (100.00%)</td>
<td>6 (100.00%)</td>
</tr>
<tr>
<td>CAA</td>
<td>11 (78.57%)</td>
<td>9 (52.94%)</td>
<td>7 (63.64%)</td>
<td>2 (33.33%)</td>
</tr>
<tr>
<td>AD pathology</td>
<td>6 (42.867%)</td>
<td>3 (17.65%)</td>
<td>2 (18.18%)</td>
<td>1 (16.67%)</td>
</tr>
</tbody>
</table>

Age upon clinical evaluation and duration to death were adjusted for in the analyses.

1Comparisons between the groups at clinical enrollment by using Fisher’s exact test.
In the linear regression analysis, DWMH was associated with microinfarcts (p = 0.045) and cerebral hemorrhages (p = 0.011). PVH was associated with arteriosclerosis (p = 0.02) (table 3).

Further Evaluation

For further evaluation of the change in small-vessel disease, we reviewed the microscopic examination of tissues corresponding to the WMH regions in 14 participants who had at least some WMHs. The severity of the breakdown of the ventricular lining was correlated with the volume of the WMH and PVH (all: r = 0.559, p = 0.019), and the volume of DWMH was correlated with deep WM demyelination (r = 0.571, p = 0.016). Decreased vessel density was observed in the periventricular WM in particular. The number of vessels in the periventricular WM was correlated with the volume of WMH (r = -0.400, p = 0.078) and PVH (r = -0.401, p = 0.078). The V1 was correlated with deep WM demyelination (r = -0.509, p = 0.032). The thickness of blood vessels was not correlated with WMHs.

In the regression analysis, the loss of ventricular lining was related to WMHs (p = 0.035) and PVHs (p = 0.046), and deep WM demyelination was related to DWMHs (p = 0.007) (table 3).

Discussion

The present study examined the pathological correlates of WMHs in patients with DAT and in cognitively normal older adults. We quantitatively measured the volume of WMHs (especially PVHs and DWMHs) separately and as a total amount of WMHs. Furthermore, we investigated areas of tissue corresponding to WMH regions in subjects with at least some WMHs. We found that DWMHs are associated with deep WM demyelination, and the breakdown of the ventricular lining was associated with PVHs and WMHs. In the sample comprising all participants, WMHs inversely correlated with neurofibrillary tangles, supporting the concept of synergistic pathologies. Interestingly, neurofibrillary tangles were associated with the volume of PVH, and diffuse plaques were associated with the volume of

Table 3. Linear regression models evaluating the association between neuropathological variables and MRI parameters

<table>
<thead>
<tr>
<th>Dependent variables</th>
<th>Independent variables</th>
<th>Regression coefficient</th>
<th>Constant</th>
<th>R²</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>WMHs</td>
<td>Neurofibrillary tangles</td>
<td>-0.001</td>
<td>0.012</td>
<td>0.070</td>
<td>0.026</td>
</tr>
<tr>
<td></td>
<td>Breakdown of ventricular lining</td>
<td>0.006</td>
<td>0.004</td>
<td>0.263</td>
<td>0.035</td>
</tr>
<tr>
<td>PVHs</td>
<td>Neurofibrillary tangles</td>
<td>-0.001</td>
<td>0.011</td>
<td>0.075</td>
<td>0.022</td>
</tr>
<tr>
<td></td>
<td>Breakdown of ventricular lining</td>
<td>0.005</td>
<td>0.004</td>
<td>0.234</td>
<td>0.046</td>
</tr>
<tr>
<td></td>
<td>Arteriosclerosis</td>
<td>0.002</td>
<td>-0.001</td>
<td>0.078</td>
<td>0.020</td>
</tr>
<tr>
<td>DWMHs</td>
<td>Microinfarcts</td>
<td>0.001</td>
<td>0.001</td>
<td>0.054</td>
<td>0.045</td>
</tr>
<tr>
<td></td>
<td>Cerebral hemorrhages</td>
<td>0.002</td>
<td>0.001</td>
<td>0.095</td>
<td>0.011</td>
</tr>
<tr>
<td></td>
<td>Deep WM demyelination</td>
<td>0.002</td>
<td>-0.001</td>
<td>0.427</td>
<td>0.007</td>
</tr>
</tbody>
</table>

Adjusted for age at clinical evaluation and duration to death.

(n = 15; p = 0.038), and 0.90 ± 1.65 mm³ (total intracranial volume 1,477.19 ± 136.94 mm³) in participants without cerebral hemorrhage (n = 49) and 3.02 ± 4.65 mm³ (total intracranial volume 1,406.25 ± 218.68 mm³) in those with cerebral hemorrhages (n = 8; p = 0.005). The severity of arteriosclerosis was correlated with the volume of PVH (r = 0.260, p = 0.027) and WMH (r = 0.213, p = 0.058).

In the linear regression analysis, DWMH was associated with microinfarcts (p = 0.045) and cerebral hemorrhages (p = 0.011). PVH was associated with arteriosclerosis (p = 0.02) (table 3).
DWMH, indicating that AD pathology may contribute to the vascular or WM pathology. The reasons for these findings are difficult to explain and require further investigation. Our results are, however, similar to previously reported patterns of severe comorbid cerebrovascular lesions in AD patients [35, 36]. In line with these results, our findings could be interpreted to indicate that cerebrovascular lesions lower the threshold for developing clinical symptoms. As the pathological burden of small-vessel disease such as arteriosclerosis increased, the volume of PVH also increased, and there was a correlation between DWMHs and cortical microinfarcts and cerebral hemorrhages.

Previous studies indicate that WMHs may reflect partial loss of myelin and axons, astrogliosis, dilatation of perivascular spaces, and fibrohyalinotic vessel changes [22, 37–39]. This range of tissue changes was thought to reflect incomplete infarction; also, complete infarcts were found to be associated with WMHs with arteriolosclerotic vessel changes in some studies [37, 39, 40]. Regarding the pathogenetic mechanisms underlying WMHs, the role of hypoxia is supported in a number of studies [41–43]. Human cerebral WM is particularly vulnerable to hypoperfusion due to the impaired perfusion and reduced cerebral blood flow through the terminal long penetrating arterioles [14, 44]. These arteries do not anastomose or form collaterals. The altered blood flow, thereby, results in a watershed phenomenon within the deep WM. The compensated chronic ischemia may turn into acute hypoxia due to reduced blood pressure. These changes lead to focal neuronal atrophy and the loss of myelin [43]. The resultant hypoxia may not be severe enough to cause cerebral necrosis or damage to the gray matter, but it is sufficient to result in WM changes. Other studies showed arteriolar tortuosity and decreased vessel densities in WMHs [45, 46], which also supports an ischemic pathogenesis of WMHs.

In the present study, WMHs were associated with demyelination, loss of ependymal cells, arteriosclerosis, microinfarcts, and cerebral hemorrhages, although not all cases exhibited these characteristics. Loss of myelinated axons and breakdown of the ventricular lining were correlated with DMWHs and PVHs, respectively, as has been demonstrated by previous studies [16, 38, 47]. Breakdown of the ventricular lining and loss of myelinated axons may cause leakage of cerebrospinal fluid into the WM, leading to WM pallor and higher signal intensity due to ventricular widening and WM atrophy, which could be caused by subcortical ‘incomplete infarcts’ [48]. However, the term ‘incomplete infarcts’ is controversial and not clearly defined, although it was suggested as being characteristic of leukoaraiosis [49]. Moreover, other studies have proposed that these pathological findings provide evidence of alternate mechanisms to ischemia because they involve no direct vascular changes [15, 50, 51]. Although we could not directly observe the correlation with vessel thickness, PVHs showed a correlation with arteriolosclerosis, as has been shown in previous studies [39, 47], which could cause hypoperfusion of the WM and somewhat reduced vessel densities. Microinfarcts and cerebral hemorrhages, which correlated with DWMHs in this study, may also be caused by small-vessel disease. In contrast to previous studies [42, 43], we could not find any association with vessel thickness. Previous studies classified only severe cases (a Wahlund scale score of 2.5–3 [52]) as leukoaraiosis, but our study included only mild WMHs compared to those two studies.

In clinical studies using MRI, an attempt to improve the specificity for WMHs was made by distinguishing between PVHs and DWMHs [34], and histopathology has demonstrated that each type of WMH reflects a distinct pathological change [19, 47, 53–55]. Van Swieten et al. [39] suggested that arteriosclerosis was the primary causative factor for DWMHs in cognitively normal older adults with cerebrovascular risk factors. PVHs are often considered to be related to normal aging [16, 56], representing the demyelination associated with subependymal gliosis and discontinuity of the ependymal lining [47]. Our study revealed an association between PVHs and neurofibrillary tangle stages and DWMHs with diffuse plaques. The
volume of WMH including PVH and DWMH increased with advancing age, and PVHs were associated with loss of ventricular lining. DWMHs were associated with deep WM demyelination. However, microinfarcts and cerebral hemorrhages in DWMHs and arteriosclerosis in PVHs are the likely consequences of small-vessel disease [38, 57–59]; thus, our findings of loss of myelin and ventricular lining might also be considered to result from ischemia or small-vessel disease [38, 56]. Previous studies have suggested that mild forms of WMH may not be clinically relevant or even detectable [60], but irregular PVHs and confluent DWMHs correspond to more severe tissue changes, probably of ischemic origin, and are more likely to produce clinical symptoms [40, 47, 54, 60]. The variability in the data may reflect the heterogeneity in the different cohorts studied. For example, in the relatively healthy NUN study cohort, evidence of ischemia was not found in severe DWMHs [61]. Moreover, the significance of WMHs will be different according to the clinical stage of the disease. Individuals with early-stage AD may be more vulnerable to the cognitive effect of WMHs than cognitively normal older adults with a similar WMH burden [62]. WMHs have been related to the different etiologies according to severity [63], and WMHs on MRI could be used in addition to complement neuropathological postmortem assessment of subcortical vascular pathology of the WM [64].

The present study has some limitations. First, cerebrovascular risk factors did not correlate significantly with the volume of WMH after adjusting for age, although subjects with advanced risk factors generally displayed higher volumes of WMH. Also, we could not find any associations between WMHs and clinical or pathological variables. This may be due to the small sample size. With a larger sample size, further evaluation classifying the subjects’ cognitive and pathological findings as well as cerebrovascular risk factors could provide more conclusive results. It should be mentioned that the relationship between cerebrovascular lesions and AD pathologies is still controversial, with some studies indicating positive associations [65–68], others indicating negative associations [35, 36, 69], and still others failing to detect any associations [70, 71]. However, the inverse relationship between WMHs and neurofibrillary tangles in this study may support a synergy between WM pathology and AD. In this study, we did not measure the number of lacunes in contrast to a previous study [59]. Although we did not find an association between WMHs and lacunes, we observed that many cases (33.33%) had lacunes which were associated with small-vessel disease [38, 57–59]. Lastly, and most importantly, our study does not necessarily prove whether WMHs develop as a result of ischemia or whether they are the consequence of impaired cell metabolism secondary to many other possible processes. Disrupted ependymal lining of the ventricles could result from cerebral atrophy and ventricular dilatation, which may be the consequence of neurodegenerative processes rather than small-vessel disease [51]. Other proposed mechanisms include blood-brain barrier dysfunction [34, 40, 44, 46, 72, 73], inflammatory processes involving microglial cells [20, 21, 74], altered cerebral blood flow autoregulation, axonal depletion from Wallerian degeneration [75], and intraparenchymal venular disease [76, 77]. All of these potential causes warrant further investigation [14, 49].

Our data indicate that WMHs increase with age, and we can suggest cautiously that WMHs might progress from periventricular WM to deep WM. PVHs increase with arteriosclerosis and DWMHs increase with microinfarcts and cerebral hemorrhages. WMHs correlated with WM pathology including breakdown of the ventricular lining and deep WM demyelination. These observations are suggestive of a potential increase in water content and, possibly, a consequence of small-vessel disease, although we could find no association between WMHs and the thickness of small vessels.
Acknowledgments

This study was supported in part by a grant (No. HI10C2020) from the Korea Healthcare Technology R&D Project, Ministry of Health and Welfare, Republic of Korea, by National Institute on Aging Grants P50AG005681 and P01AG003991, and the Charles F. and Joanne Knight Alzheimer’s Initiative. We thank the staff of the Neuropathology Core of the Knight Alzheimer’s Disease Research Center for their histological expertise and assistance.

Disclosure Statement

We have no conflicts of interest to declare.

References

Shim et al.: Pathological Correlates of White Matter Hyperintensities on Magnetic Resonance Imaging

DOI: 10.1159/000366411

22 Awad IA, Johnson PC, Spetzler RF, Hodak JA: Incidental subcortical lesions identified on magnetic resonance imaging in the elderly. II. Postmortem pathological correlations. Stroke 1986;17:1090–1097.

36 Awad IA, Johnson PC, Spetzler RF, Hodak JA: Incidental subcortical lesions identified on magnetic resonance imaging in the elderly. II. Postmortem pathological correlations. Stroke 1986;17:1090–1097.

Shim et al.: Pathological Correlates of White Matter Hyperintensities on Magnetic Resonance Imaging

