Capsule Contraction Syndrome with a Microincision Foldable Hydrophilic Acrylic Intraocular Lens: Two Case Reports and Review of the Literature

Angelo Balestrazzi Alex Malandrini Gianluca Martone
Davide Marigliani Tomaso Caporossi Gian Marco Tosi

Department of Ophthalmology, University of Siena, Siena, Italy

Key Words
Cataract surgery · Capsulorhexis · Capsule contraction syndrome

Abstract
Here we present 2 cases of capsule contraction syndrome (CCS). In both cases, a hydrophilic acrylic Akreos MI60 (Bausch and Lomb) intraocular lens (IOL) was implanted in the capsular bag through microincision cataract surgery, and the literature on the subject is reviewed. Since CCS has been described after the implantation of every IOL type, it is unlikely that the Akreos MI60 chemical and physical properties may cause CCS. When CCS occurs with IOLs composed of increasingly flexible materials that are inserted through incisions of decreasing size, a severe dislocation and deformation of IOL optics and haptics may develop. In both cases illustrated here, Nd:YAG laser anterior capsulotomy was highly effective. Hence, also based on the literature, which reports severe complications as a result of surgical intervention, it is suggested that Nd:YAG laser anterior capsulotomy be the first line of CCS treatment when the luxation of an IOL capsular bag is absent.

Introduction
The goal of modern cataract surgery is the rapid restoration of vision, which explains the tendency towards microincision phacoemulsification. However, serious postoperative complications may occur. Capsule contraction syndrome (CCS) is a well-recognized postoperative complication of cataract surgery, which has been mainly observed in conditions of zonular weakness and chronic intraocular inflammation [1–2]. The material
and design of intraocular lenses (IOLs) have been hypothesized to play a role in anterior capsule opacification, the milder form of the disease [2]. However, CCS has been reported to occur with different types of IOLs, including polymethylmethacrylate, silicone and acrylic [2–24]. Herein, we illustrate 2 cases of CCS following microincision cataract surgery without any associated ocular or systemic disease and we also review the literature on the subject (table 1).

Case Reports

Case 1

A 72-year-old female was referred to our center due to visual acuity reduction in her left eye (LE). Her general medical history was unremarkable. Her ocular history was positive for cataract surgery involving microincision phacoemulsification and an in-the-bag implantation of an Akreos M160 (Bausch and Lomb) IOL in her LE 4 months previously. She did not report having had any ocular pathologies in the past. It was not possible to review her old records. Best-corrected visual acuity (BCVA) was 20/60 in her right eye (RE) and 20/100 in her LE. Dilated slit-lamp examination revealed a corticonuclear cataract in her RE, while her LE showed phimosis and a complete occlusion of the capsulorhexis incision by anterior capsule shrinkage, together with folding of the haptics as well as tilting and decentration of the IOL (fig. 1a, b). Her intraocular pressure was within normal limits in both eyes. A fundus examination showed normal results in both eyes, although CCS impaired her vision in the LE. No signs of past or current ocular inflammation or pseudoexfoliation were observed. Ultrabiomicroscopy analysis revealed a partial ciliary body detachment (fig. 1e, f). In her LE, a neodymium:YAG (Nd:YAG) laser was used to create a radial opening in the capsular phimosis, then to perform a circular enlargement and resolve the capsular synechiae of the haptics (fig. 1c, d). One week after Nd:YAG treatment, the visual acuity in her LE was 20/20 and the ciliary body detachment had been resolved (fig. 1g, h). Three months later, phacoemulsification and an in-the-bag implantation of an AcrySof SA60AT (Alcon) hydrophobic acrylic IOL was performed in her RE. Six months later, her BCVA was 20/20 in both eyes, without any CCS in her RE.

Case 2

A 68-year-old female was referred to our center due to a visual acuity reduction in her LE. Her general medical history was unremarkable, while her ocular history was positive for cataract surgery involving microincision phacoemulsification and an in-the-bag implantation of an Akreos M160 (Bausch and Lomb) IOL in her LE 3 months previously. She did not report having had any ocular pathologies in the past. It was not possible to review her old records. BCVA was 20/60 in her RE and 20/30 in her LE. No signs of past or current ocular inflammation or pseudoexfoliation were observed. Ultrabiomicroscopy analysis revealed a partial ciliary body detachment (fig. 1e, f). In her LE, a neodymium:YAG (Nd:YAG) laser was used to create a radial opening in the capsular phimosis, then to perform a circular enlargement and resolve the capsular synechiae of the haptics (fig. 1i). One week after Nd:YAG treatment, the visual
acuity in her LE was 20/20 without correction. Three months later, phacoemulsification and an in-the-bag implantation of an AcrySof SA60AT (Alcon) hydrophobic acrylic IOL was performed in her RE. Six months later, BCVA was 20/20 in both eyes, without any CCS in her RE.

Discussion

While most patients who have cataract surgery with posterior-chamber IOL placement have excellent long-term results, IOL-related complications may occur even when the IOL is placed in the capsular bag. CCS is a postoperative complication occurring after in-the-bag IOL placement. The degree of anterior capsule contraction is believed to be related to many predictors, including the state of the patients' lens capsules and zonules, concurrent ocular pathology, and surgical complications [1–2].

We reported 2 patients with CCS after microincision cataract surgery hydrophilic acrylic Akreos MI60 IOLs were implanted in the capsular bag, without any associated ocular or systemic diseases. Both patients developed CCS, which caused ciliary body detachment in the first patient (as reported by Lanzl [7], Salzman et al. [8], and Srinivasan et al. [10]) and posterior dislocation of the IOL optic in the latter (as reported by Sanders et al. [14], Ozturk et al. [16], Qatarneh et al. [21], and Zaugg et al. [23]) (table 1). Notwithstanding the fact that no ocular risk factors were apparently present (since surgery had been performed elsewhere), we cannot exclude a weakness of the zonular apparatus, even in the absence of pseudoxefoliation or a small capsulorhexis as intraoperative causative factors of CCS.

We do not believe that Akreos MI60 chemical properties or its plate-haptic design played a role in causing CCS. In a series of 135 eyes, Can et al. [24] compared standard coaxial, microcoaxial and biaxial microincision cataract surgery in 2010, implanting 20 Akreos MI60 IOLs without reporting any cases of CCS at the respective 3-month follow-ups.

Notwithstanding the fact that the composition and design of IOLs might also influence the degree of anterior capsule contraction, CCS has been reported to occur with different types of IOLs including PMMA, silicone and acrylic, both hydrophobic and hydrophilic [2–24].

The literature data shows that CCS has occurred in eyes with and without risk factors after the implantation of every IOL type (PMMA, silicone and acrylic); however, looking at the most recent reports, CCS has mainly developed after hydrophilic acrylic IOL implantation (in 1 case after implanting Akreos MI60 [18], in 1 case after Raysoft 574 R, Rayner Intraocular lenses, Ltd. [23], in 1 case after Bioacryl, Biotech [23], in 5 cases after Quatrix IOL, Croma Pharma GmbH [22], and in 6 cases after implanting an Akreos IOL lens [19–21]) (table 1).

Nd:YAG laser anterior capsulotomy was effective in clearing the visual axis in both our patients and in resolving the ciliary body detachment in the first patient and the refractive error induced by the posterior dislocation of the IOL optic in the second. In the past, numerous successes with Nd:YAG laser anterior capsulotomy have been reported without any associated complications (table 1). We believe that the first treatment should always be performed with Nd:YAG laser anterior capsulotomy, unless an evident luxation of the complex IOL capsular bag is present. In fact, as reported by Ozturk et al. [16] and by Michael et al. [22], surgical treatment may lead to severe complications, notwithstanding a well-conducted original phacoemulsification, which is mainly the result of the capsular bag removal. In these cases, the authors [16, 22] did not report any previous attempts of treatment with Nd:YAG laser anterior capsulotomy (table 1).
As the interest in microincision cataract surgery continues to grow, there is a tendency to find increasingly flexible materials to insert or inject through smaller incisions [16]. However, as stressed by Zaugg et al. [23], Qatarneh et al. [21] and by Caravella [20], we believe that, when CCS occurs with IOLs such as the Akreos MI60, which has to be particularly soft to enter the eye through a microincision, it easily causes compression stretching of the IOL, resulting in a significant dislocation and deformation of both the optics and the haptics.

Disclosure Statement

The authors declare no conflict of interest.

References

Table 1. CCS after cataract surgery

Study	IOL type	Eyes implanted with this IOL type, n	Eyes with CCS, n	Age of patients with CCS, years	Predisposing ocular conditions	CCC size, mm	CTR implantation at the time of surgery	Time between surgery and CCS	Clinical manifestations	Treatment	Complications		
Zaugg [23], 2010	Akreos M160 (Bausch and Lomb)	NR	2	60, NR (1)	None (1), Pxx (1)	NR	NI	1 month, NR (1)	VAR-HS (1), VAR (1)	IDELE-CBRx-VxxIOLAC (1), SC-CBR (1), IOLAC (2), no (2)	GRT (1)		
Present report	Akreos M160 (Bausch and Lomb)	NR	2	72, 68	None	NR	NI	4 months, 3 months	VAR (2), CBD (1), HS (1)	L (2)	NR		
Michael [22], 2010	Quattrx (Croma-Pharma GmbH)	NR	5	56, 46, 81, 04	RP (1), U (1)	6-8	NBS	2 months (1), 2 weeks	VAR (5)	IDELE-IOLAC (1), SC-IOLAC (2), no (2)			
Qatarnieh [21], 2010	Akreos Adapt (Bausch and Lomb)	NR	3	55, 48, 59	M (2), RP (2)	NR	NI	9 months, 11 months, 6 months	HS (2), VAR (1)	no (1), L (1), SC (1)	L (1) and SC (1) not effective		
Caravella [20], 2010	Akreos (Bausch and Lomb)	Large series	NBS	2	NR	None	5.5	NI	3 months (1), NR (1)	none	L	NR	
Rystals [23], 2010	Raysoft (Rayser Intraocular Lenses, Ltd), Bioacryl (Biotech)	NR	2	60, NR (1)	None (1), Pxx (1)	NR	NI	1 month, NR (1)	VAR-HS (1), VAR (1)	IDELE-CBRx-VxxIOLAC (1), SC-CBR (1), IOLAC (2), no (2)	GRT (1)		
Venkatash [17], 2008	Sensar AR400e (AMO)	NR	1	65	Pxx	5-5.5	NI	2 months	VAR	L	NR		
Oztruk [16], 2007	Collamer CC420BF (Staar Surgical)	NR	2	69, 72	None	4.5 (1)	NR (1)	1 month (1), 7 weeks	HS (1), HS-VAR (1)	IDELE (1), IDELE-CBR-IOLE (1)	CE in 1		
Fratzsch [15], 2007	ThinOptX (ThinOptX, Inc)	NR	50	1	NR	NR	NR	NR	NR	IDELE	NR		
Sanders [14], 2006	Collamer CC420BF (Staar Surgical)	160,000	40	NR	NR	Less than 5.5 in several eyes	NR	1 week, 11 months	HS (40)	L (14)	NR		
Mizia [13], 2004	Solilex 2 (Bausch and Lomb)	NR	1	81	Oxx, previous trabeculectomy	5	NI	2 months	VAR, hypotony, choroidal effusion	L	NR		
Ueno [12], 2004	AcrySof MA60BM (Alcon)	NR	1	80	Pxx, Oxx, phacoendoscopy	4-5	NI	1 month	VAR	IDELE-CBRx-Vxx, scleral fixation IOL	NR		
Montanes [11], 2002	AcrySof MA30BA (Alcon)	NR	2	69	Pxx phakendoscopy	NR	1 (2)	2 months	VAR (1)	L (1)	NR		
Salzmann [10], 2000	Foldable silicone (NBS), one-piece PMMA (NBS)	NR	2	72, 70	Oxx (2)	NR	2 months (2)	VAR (2), CBD with hypotony (2)	L and SC (1), L (1)	ineffective in 1	NR		
Ono [9], 2001	PMMA, Universal Model	NR	1	56	RP, zonular laxity	6	I	4 months	VAR	L	NR		
Srinivasan [8], 2000	Allergan SI30 NB	NR	1	72	Oxx, previous trabeculectomy	5	NI	2.5 months	CBD, hypotony, VAR	L	NR		
Lanzl [7], 1999	3-piece PMMA, Pharmacia 155A	NR	1	74	None	5	NI	18 months	VAR, CBD with hypotony	L	NR		
Spang [5], 1999	PMMA (NBS)	NR	1	81	NAG	4-5	NI	2 months	VAR	SC	NR		
Chawla [6], 1999	Allergan SI30 NB	NR	1	80	NR	5	NI	1.5 months	VAR	L	NR		
Zaugg [4], 1998	PMMA M260BD (Alcon)	47	14	NR	RF (47)	5.5	NI	within 12 months	VAR	L (14)	NR		
Prabh [3], 1996	PMMA (NBS)	NR	2	28, 68	M (1)	4.5	NI	1 month	NR	L (2)	NR		

CBD = Ciliary body detachment; CBR = capsular bag removal; CCC = continuous curvilinear capsulorhexis; CE = corneal edema; CTR = capsular tension ring; GRT = giant retinal tear; HS = hyperopic shift; I = implanted; IOLAC IOL = in anterior chamber; IOLE IOL = exchange; IOLE IOL = exchange; IOLIF = iris-fixated IOL; L Nd:YAG = laser anterior capsulotomy; M = myopia; NAG = narrow angle glaucoma; NBS = not better specified; NED = no evidence of disease; NI = not implanted; NR = not reported; OAG = open-angle glaucoma; Pxx = pseudexfoliation; RP = retinitis pigmentosa; SC = surgical anterior capsulotomy; U = uveitis; VAR = visual acuity reduction; Vxx = vitrectomy.
Fig. 1. a, b CCS syndrome with severe IOL deformation and dislocation. c, d Anterior segment after Nd:YAG laser treatment of the phimosis. e Preoperative ultrabiomicroscopy analysis showing a partial ciliary body detachment (black arrow) and stretched and thickened zonular fibers (white cross). f Preoperative ultrabiomicroscopy showing a capsulorhexis phimosis as a highly reflective line in the pupillary space (white arrow) and a subcapsular fibrosis as not homogeneous echoes inside the capsular bag (white star). g Ultrabiomicroscopy analysis after Nd:YAG laser treatment of the phimosis showing a resolution of the ciliary body detachment and of the zonular traction. h Ultrabiomicroscopy analysis after Nd:YAG laser treatment of the phimosis showing the disappearance of the high reflective line together with a deepening of the posterior chamber (white arrow). i Anterior segment after Nd:YAG laser treatment of the phimosis.