Hypophysiotropic Gonadotropin-Releasing Hormone Projections Are Exposed to Dense Plexuses of Kisspeptin, Neurokinin B and Substance P Immunoreactive Fibers in the Human: A Study on Tissues from Postmenopausal Women

Beáta Á. Borsay a Katalin Skrapits b László Herczeg a Philippe Ciofi d Stephen R. Bloom e Mohammad A. Ghafei e Waljit S. Dhill o e Zsolt Liposits b, c Erik Hrabovszky b

a Department of Forensic Medicine, Faculty of Medicine of the University of Debrecen, Debrecen, b Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, and d Department of Neuroscience, Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, Hungary; e INSERM U862, Neurocentre Magendie, Bordeaux, France; f Department of Investigative Medicine, Hammersmith Hospital, Imperial College London, London, UK

Key Words
Human · Hypothalamus · Infundibulum · Median eminence · Pituitary · Reproduction · Tachykinins

Abstract
Neuronal populations that synthesize kisspeptin (KP), neurokinin B (NKB) and substance P (SP) in the hypothalamic infundibular nucleus of humans are partly overlapping. These cells are important upstream regulators of gonadotropin-releasing hormone (GnRH) neurosecretion. Homologous neurons in laboratory animals are thought to modulate episodic GnRH secretion primarily via influencing KP receptors on the hypophysiotropic fiber projections of GnRH neurons. To explore the structural basis of this putative axo-axonal communication in humans, we analyzed the anatomical relationship of KP-immunoreactive (IR), NKB-IR and SP-IR axon plexuses with hypophysiotropic GnRH fiber projections. Immunohistochemical studies were carried out on histological samples from postmenopausal women. The neuropeptide-IR axons innervated densely the portal capillary network in the postinfundibular eminence. Subsets of the fibers formed descending tracts in the infundibular stalk, some reaching the neurohypophysis. KP-IR, NKB-IR and SP-IR plexuses intermingled, and established occasional contacts, with hypophysiotropic GnRH fibers in the postinfundibular eminence and through their lengthy course while descending within the infundibular stalk. Triple-immunofluorescent studies also revealed considerable overlap between the KP, NKB and SP signals in individual fibers, providing evidence that these peptidergic projections arise from neurons of the mediobasal hypothalamus. These neuroanatomical observations indicate that the hypophysiotropic projections of human GnRH neurons in the postinfundibular eminence and the descending GnRH tract coursing through the infundibular stalk to the neurohypophysis are exposed to neurotransmitters/neuropeptides released by dense KP-IR, NKB-IR and SP-IR fiber plexuses. Localization and characterization of axonal neuropeptide receptors will be required to clarify the putative autocrine and paracrine interactions in these anatomical regions.
Introduction

A peptidergic neuron population identified in the hypothalamic arcuate nucleus (ARC) co-synthesizes kisspeptin (KP), neuropeptide B (NKB) and dynorphin [1–3] in a variety of mammalian species; these ‘KNDy neurons’ [4] were proposed to constitute an important regulatory component of the pulse generator which shapes the episodic secretion of gonadotropin-releasing hormone (GnRH) into the hypophysial portal circulation [2, 3, 5]. While homologous KP and NKB neurons are also present in the human infundibular nucleus [6, 7], species differences are also likely to exist in the neurotransmitter complement that these neurons use for communication [8]. Notably, morphological studies have found only poor evidence for dynorphin expression in KP-immunoreactive (IR) neurons in the infundibular nucleus of young men [9]. On the other hand, substance P (SP) has been revealed in considerable subsets of KP and NKB neurons in the human [10], but not in the rodent or sheep, KNDy neurons.

The regulation of GnRH release by overlapping populations of KP and NKB neurons is thought to take place primarily via KP signaling through the KP receptor (KISS1R) which is expressed in GnRH cells [11–13]. While additional immunohistochemical evidence from rats [14] and single-cell microarray evidence from mice [12] indicate that a subset of GnRH neurons also contain the NK3 receptor for NKB, NK3 immunoreactivity has not been revealed in GnRH neurons of the sheep [15]. In addition, the effect of NKB on LH release seems to require KP signaling in the monkey [16], raising further the possibility of species difference. The issue of whether GnRH neurons possess the NK1 receptor for SP has not been addressed.

Hypothalamic KP neurons are capable of regulating reproduction via acting on the somatodendritic compartment of the GnRH cell. Accordingly, GnRH neurons receive KP-IR afferent contacts [7, 17–20] and show depolarization [12, 21, 22] and cFos expression [11, 23] in response to KP. Similarly to KP fibers, NKB-IR axons also establish axo-somatic and axo-dendritic contacts with GnRH neurons in rats [24], mice [25] and humans [9, 26, 27] and 16% of the GnRH-IR perikarya in the preoptic area of the rat exhibit NK3 immunoreactivity [14]. Somewhat conflictingly, mouse GnRH neurons do not give electrophysiological responses to the NK3 receptor agonist senktide in slice preparations [28], and senktide does not induce GnRH release from the preoptic area which contains the GnRH cell bodies [29]. In the human mediobasal hypothalamus, many SP-IR neurons are identical with KP and NKB neurons [10]. SP neurons provide axo-somatic and axo-dendritic inputs to GnRH neurons, as indicated by light microscopic immunohistochemical observations in humans [30] and immunoelectronmicroscopic data from rats [31].

In addition to influencing the somatic and dendritic compartments of GnRH neurons, there is accumulating evidence from a variety of species that KP and NKB can also regulate GnRH secretion in the median eminence, where GnRH axon terminals are juxtaposed to KP-IR [7, 19, 32] and NKB-IR [14, 33] processes. Such direct axo-axonal contacts are devoid of classical synaptic specializations at the ultrastructural level [32, 33]. Although immunohistochemical studies are still unavailable to demonstrate the presence of the KP receptor (KISS1R) at this putative axo-axonal communication site, a previous immunofluorescence study on rats identified NK3 immunoreactivity on GnRH-IR fibers in the median eminence [14]. Abundant functional evidence exists to support the concept that both KP and NKB act on the axonal compartment of GnRH neurons. Accordingly, GnRH secretion from mediobasal hypothalamic explants of mice (which contain the hypothalamic GnRH axons but few if any GnRH cell bodies) can be stimulated by KP in a KISS1R-dependent and action potential-independent manner [34]. A site for KP action outside the blood-brain barrier gains additional support from the observations that systemic KP injection induces LH secretion in rats [23, 35], monkeys [36] and humans [37, 38], although it remains possible that KP causes these effects in other circumventricular organs, including the organum vasculosum of the lamina terminalis [39]. Similarly to KP, the NK3 agonist senktide is capable of eliciting GnRH release from the median eminence of mice and this action does not require KP signaling [29].

In different species, the GnRH pulse generator is thought to be located in the mediobasal hypothalamus which also contains the KNDy neurons. Accordingly, mediobasal hypothalamic explants from fetal and adult human brains release GnRH in a pulsatile manner [40]. Similarly, GnRH secretion occurs episodically from mediobasal hypothalamic explants of the rat. In this rodent species, the mediobasal hypothalamus contains the hypothalamic GnRH axon projections but no GnRH cell bodies [41], suggesting that upstream elements of the GnRH pulse generator act via influencing the neurosecretory output of hypophysiotropic GnRH fibers. Information accumulated about KNDy neurons in the last few years has been incorporated into new models of the GnRH/LH pulse generator. According to these models,
the peptidergic communication of KNdy neurons with each other and with GnRH neurons is critically involved in the regulation of pulsatile GnRH secretion [3, 4, 28, 42].

Here, we have used immunohistochemistry to study the putative axo-axonal interaction sites, where KP-IR and NKB-IR fibers might influence GnRH neurosecretion in the human. The analysis was extended to SP-IR axons, many of which are identical with KP-IR and NKB-IR axons in the human [10]. The anatomical relationship of KP-IR [7], NKB-IR [7] and SP-IR [43] axons with GnRH-IR [44] axons was first studied around the postinfundibular eminence which contains the majority of the portal capillaries in the human [45]. GnRH axons in the human and the monkey enter the infundibular stalk (InfS), and many fibers descend all the way down to the human and the monkey enter the infundibular stalk. Dissection guidelines from the hypothalamic blocks were the optic chiasm rostrally, the mammillary body caudally and the pituitary stalk. Dissection guidelines from the hypothalamus were successfully in previous immunohistochemical experiments on hypothalamic sections from the rhesus monkey [19, 49] and the human [7, 9, 26, 27]. NKB synthesizing neuronal fibers were visualized with a previously characterized [7, 9, 26, 27, 49] rabbit polyclonal antiserum (IS-682; P. Ciofi; 1:100,000) directed against the C-terminal 28 amino acids of human pro-NKB or alternatively, with a mouse monoclonal antibody against human NKB (Biosens Pty, Ltd., Thebarton, S.A., Australia; M-871-100; 1:50,000). SP immunoreactivity was detected either with a rat monoclonal antibody (Serotec No. 1018; 1:50,000) [26]. This rabbit antiserum required an amidated thioglycolic acid pretreatment step was left out. KP immunoreactivity was detected with a sheep polyclonal antiserum (GQ2; 1:150,000) against human KP-54. This antiserum recognizes human KP-54, KP-14 and KP-10 and shows no cross-reactivity (<0.01%) with other human RF-amide peptides, including prolactin releasing peptide, neuropeptide FF, neuropeptide F and RF-amide related peptides (RFRP1, RFRP2, RFRP3) [37]. The GQ2 antibodies were used successfully in previous immunohistochemical experiments on hypothalamic sections from the rhesus monkey [19, 49] and the human [7, 9, 26, 27]. The hyaluronic acid content of portal capillaries in the human [7, 26], the peptidergic communication of KNdy neurons with each other and with GnRH neurons is critically involved in the regulation of pulsatile GnRH secretion [3, 4, 28, 42].

Here, we have used immunohistochemistry to study the putative axo-axonal interaction sites, where KP-IR and NKB-IR fibers might influence GnRH neurosecretion in the human. The analysis was extended to SP-IR axons, many of which are identical with KP-IR and NKB-IR axons in the human [10]. The anatomical relationship of KP-IR [7], NKB-IR [7] and SP-IR [43] axons with GnRH-IR [44] axons was first studied around the postinfundibular eminence which contains the majority of the portal capillaries in the human [45]. GnRH axons in the human and the monkey enter the infundibular stalk (InfS), and many fibers descend all the way down to the neurohypophysis [44]. Therefore, we have also examined the anatomical relationship of these long descending GnRH fiber projections through the InfS to the neurohypophysis with the descending KP-IR, NKB-IR and SP-IR axon tracts.

Materials and Methods

Tissue Collection

Human hypothalamic and pituitary tissues from 5 postmenopausal female subjects (53–83 years) were obtained at autopsies [7, 26] from the Forensic Medicine Department of the University of Debrecen, with the permission of the Regional Committee of Science and Research Ethics (DEOEC RKEB/IKEB: 3183-2010). The subjects were not known to suffer from neurological or endocrine disorders and the postmortem intervals before dissection were below 36 h.

Tissue Preparation for Immunohistochemistry

Brain removal from the skull was carried out in a way to maintain a long pituitary stalk. Dissection guidelines from the hypothalamic blocks were the optic chiasm rostrally, the mamillary bodies caudally and the anterior commissure dorsally [7, 26]. The hypophysis was also taken out from the sella following the removal of the brain. The tissue blocks were rinsed briefly with running tap water, and then, immersion-fixed in 4% formaldehyde in 0.1 M phosphate buffered saline (pH 7.4) for 7–21 days. The fixed hypothalami were cut in half before section preparation. The pituitaries were sliced permanently in anti-freeze solution (30% ethylene glycol; 25% glycerol; 0.05 M phosphate buffer; pH 7.4) at −20 °C.

GnRH Fibers as Putative Targets to Neuropeptide Actions

Tissue Pretreatments

Every 72nd section of the hypothalamic infundibular nucleus (2–3 sections per subject) and the hypophysis was used for each immunohistochemical experiment. The relationship of KP-IR, NKB-IR and SP-IR axons to the portal capillary plexuses and to GnRH-IR fibers was studied on adjacent sections. The sections were rinsed in phosphate buffered saline and pretreated with a mixture of 0.5% H2O2 and 0.2% Triton X-100 for 30 min. Then, epitope retrieval was carried out using a 30-min treatment in 0.1 M citrate buffer (pH = 6.0) at 80 °C. In immunofluorescence experiments, similar series of sections were used and treated additionally with Sudan black as described previously [46], to reduce tissue autofluorescence [47].

Dual-Labeling Immunohistochemistry

Incubation of neighboring sections in KP, NKB or SP antibodies for 48 h at 4 °C was followed by biotinylated secondary antibodies (Jackson ImmunoResearch Laboratories, West Grove, Pa., USA; 1:500) and the ABC Elite reagent (Vector, Burlingame, Calif., USA; 1:1,000) for 60 min each. The peroxidase signal was visualized with nickel-diaminobenzidine chromogen. Then, the chromogen was silver-gold-intensified as detailed elsewhere [48], except that the thioglycolic acid pretreatment step was left out. KP immunoreactivity was detected with a sheep polyclonal antiserum (GQ2; 1:150,000) against human KP-54. This antiserum recognizes human KP-54, KP-14 and KP-10 and shows no cross-reactivity (<0.01%) with other human RF-amide peptides, including prolactin releasing peptide, neuropeptide FF, neuropeptide AF and RF-amide related peptides (RFRP1, RFRP2, RFRP3) [37]. The GQ2 antibodies were used successfully in previous immunohistochemical experiments on hypothalamic sections from the rhesus monkey [19, 49] and the human [7, 9, 26, 27]. NKB synthesizing neuronal fibers were visualized with a previously characterized [7, 9, 26, 27, 49] rabbit polyclonal antiserum (IS-682; P. Ciofi; 1:100,000) directed against the C-terminal 28 amino acids of human pro-NKB or alternatively, with a mouse monoclonal antibody against human NKB (Biosens Pty, Ltd., Thebarton, S.A., Australia; M-871-100; 1:50,000). SP immunoreactivity was detected either with a rat monoclonal antibody (Serotec No. 1018; 1:50,000) [26]. This rabbit antiserum required an amidated carbonyl terminus group for recognition and showed less than 0.05% cross-reactivity with either neurokinin A or NKB [50].

Following the detection of KP, NKB or SP, the sections were processed further to detect GnRH-IR axons, using a previously characterized guinea pig antiserum against mammalian GnRH (No. 1018; 1:50,000) [26]. GnRH-IR elements were visualized with the biotinylated secondary antibody-ABC technique and brown diaminobenzidine chromogen, as in previous dual-label immunoperoxidase experiments [7, 9, 26, 27].

Triple-Immunofluorescent Labeling for the Simultaneous Visualization of KP, NKB and SP

A series of hypothalamic and hypophysial sections was used to study the putative colocalization between KP, NKB and SP immunoreactivities. First, the primary antibodies were applied to the sections in a cocktail consisting of the sheep KP (1:1,000), rabbit NKB (1:1,000) and rat SP (1:1,000) antibodies (4 °C; 24 h). Then,
the sections were transferred for 12 h at 4°C into the following secondary antibody cocktail: anti-sheep-Cy3 (1:1,000) + anti-rabbit-FITC (1:250) + anti-rat-Cy5 (1:500).

Section Mounting and Coverslipping
Sections processed with peroxidase-based immunohistochemistry were mounted on microscope slides from Elvanol, air-dried, dehydrated with 95% (5 min), followed by 100% (2 × 5 min) ethanol, cleared with xylene (2 × 5 min) and coverslipped with DPX mounting medium (Sigma, St. Louis, Mo., USA). Immunofluorescent specimens were mounted from 0.1 M Tris-HCl buffer (pH 7.6) and coverslipped with the aqueous mounting medium Mowiol.

Analysis
Peroxidase-labeled sections were analyzed and representative light microscopic images prepared with an AxioCam MRC 5 digital camera mounted on a Zeiss Axioslager M1 microscope, and using the AxioVision 4.6 software (Carl Zeiss, Göttingen, Germany).

Confocal images from the triple-immunofluorescent specimens were prepared with a Radiance 2100 (Bio-Rad Laboratories, Hemel Hempstead, UK) confocal systems. Individual optical slices (<0.8 μm) were collected for analysis and illustrations using the 'lambda strobing' function so that only one excitation laser and the corresponding emission detector were active during a line scan, to eliminate emission crosstalk between the fluorophores. The separately recorded red, green and far-red channels were merged and transferred into the red, blue and green channels of Adobe Photoshop (PSD) files, respectively.

Specificity Controls
Various control approaches were used to confirm the specificity of immunohistochemical results. For peroxidase-based detection, specificity controls included the comparative analysis of the immunohistochemical staining obtained with two distinct antisera in neighboring sections. In the case of KP, results obtained with the sheep GQ2 antiserum against the processed active peptide KP-54 (amino acids 68–121 of Q15726) and two commercially available affinity-purified rabbit polyclonal antibodies (Antibody Verify Inc., Las Vegas, Nev., USA) were compared. These rabbit reference antibodies target amino acids 21–81 (AAS26420C) and 47–107 (AAS27420C), respectively, of the 138-amino acid human pro-KP sequence (Q15726). Of note, these peptide segments do not include the C-terminal RF-amide motif of KP which could account for unwanted cross-reactions with other members of the RF-amide peptide family. For NKB, results obtained with the rabbit antisera (IS-681 and IS-682) [7] and with the mouse monoclonal antibody (M-871-100) were compared. Similar positive control experiments for SP labeling were carried out by replicating the immunohistochemical labeling with the rabbit (No. 505D3) and the rat (No. 8450-0505) antibodies. Negative control experiments included the omission of the primary or secondary antibodies from the labeling procedure.

In triple-label immunofluorescent studies, the presence of many bright single-labeled, in addition to double- and triple-labeled, structures served as an endogenous control for the absence of antibody cross-reactions and bleed-through.

Finally, series of test sections were dual-labeled with the combined use of the rabbit and sheep KP antibodies, the rabbit and mouse NKB antibodies or the rabbit and rat SP antibodies. In these double-labeling experiments, the primary antibodies raised in the different species were detected with FITC-conjugated and Cy3-conjugated secondary antibodies.

Results

Demonstration of Anatomical Overlap between Hypophysiotropic GnRH Fibers and Axons Expressing KP, NKB, and SP Immunoreactivities
The hypothalamic distribution of GnRH-IR [44, 51, 52], KP-IR [7, 8], NKB-IR [7] and SP-IR [30, 43] neuronal cell bodies and fibers was in agreement with previous reports. While the dual-labeling experiments confirmed that GnRH neurons in the mediobasal hypothalamus receive axo-somatic and axo-dendritic afferent contacts from KP-IR, NKB-IR and SP-IR neurons [7, 26, 30], the present study focused on the anatomical sites of major hypophysiotropic GnRH fiber projections. These GnRH projections were present in highest abundance in the postinfundibular eminence (fig. 1a–i) which contains a

![Fig. 1](https://example.com/fig1.png)

Fig. 1. Overlapping distribution of GnRH-IR, KP-IR, NKB-IR and SP-IR axons in the postinfundibular eminence, infundibular stalk and neurohypophysis. Dual-immunoperoxidase-stained histological sections of the postinfundibular eminence from postmenopausal women illustrate very dense KP-IR (a–c), NKB-IR (d–f) and SP-IR (g–i) axon plexuses (black silver-gold-intensified nickel-diaminobenzidine chromogen) around the portal capillary vessels. Brown diamobenzidine labeling reveals the hypophysiotropic GnRH fiber plexuses that surround the portal vasculature similarly. j–r Not all peptidergic axons terminate in the postinfundibular eminence and considerable subsets descend through the infundibular stalk to reach the neurohypophysis. Note that these descending fibers appear as parallel tracks in j and m, whereas they are transected in p due to the different section plane. Arrows in high-power panels point to the occasional axo-axonal contacts established by KP-IR, NKB-IR and SP-IR axons with GnRH-IR fibers in the postinfundibular eminence (b, c, e, f, h, i) and the neurohypophysis (k, l, n, o, q, r). s, t Results of triple-immunofluorescent studies provide evidence that KP-IR (red), NKB-IR (blue) and SP-IR (green) fibers involved in the putative axo-axonal interactions with GnRH fibers are often identical. Colocalization of the neuropeptides also indicates that these fibers originate in the infundibular nucleus. White color in the infundibular stalk (s) and in the neurohypophysis (t) corresponds to fibers that contain all three fluorochromes. t Arrowheads point to triple-labeled (KP/NKB/SP-IR) axon varicosities the neurohypophysis, whereas many single- and double-labeled (NKB/SP: turquoise; SP/KP: yellow; KP/NKB: purple) fibers also occur. Scale bar in t corresponds to 60 μm in a, d, g, 10 μm in b, c, e, f, h, i, k, l, n, o, q, r, 30 μm in s and 6 μm in t.

(For figure see next page.)

DOI: 10.1159/000368362

Neuroendocrinology 2014;100:141–152

Ghatei/Dhillon/Liposits/Hrabovszky

Borsay/Skrapits/Herczeg/Ciofi/Bloom/
GnRH Fibers as Putative Targets to Neuropeptide Actions

Neuroendocrinology 2014;100:141–152
DOI: 10.1159/000368362

postinfundibular eminence

neurohypophysis

infundibular stalk
superficial and a deep plexus of hypophysial portal capillaries [45]. These capillary plexuses were surrounded by GnRH-IR axons and, at the same time, also by very dense KP-IR (fig. 1a), NKB-IR (fig. 1d) and SP-IR (fig. 1g) fiber networks. High-power light microscopic analysis of double-labeled sections revealed occasional axo-axonal appositions between the GnRH-IR fibers and the other three phenotypes of peptidergic axons (fig. 1b, c, e, f, i, l).

The analysis of immunostained histological sections from the neurohypophysis confirmed the previous observation [44] that a significant population of GnRH-IR fibers entering the human InfS descend to the neurohypophysis (fig. 1j–r). In addition, we found that the neurohypophysis also contained abundant plexuses of KP-IR (fig. 1j–l), NKB-IR (fig. 1m–o) and SP-IR (fig. 1p–r) fibers; the course and distribution of these fibers overlapped with the projection areas of the descending GnRH-IR processes (fig. 1k, l, n, o, q, r). In each dual-labeling experiment, occasional axo-axonal contacts were also detectable between the different types of peptidergic axons and the GnRH fibers (fig. 1l, n, o, q, r).

Visualization of the Parallel Descent of GnRH-IR and SP-IR Fibers through the InfS

Some hypothalamic samples contained long InfS, allowing us to follow the parallel descent of different peptidergic projections (fig. 2). The analysis of such specimens showed that peptidergic axons often intermingled with groups of IR cell bodies, in particular in the upper portions of the InfS (fig. 2c–e). The descending KP-IR, NKB-IR and SP-IR axon tracts intermingled and established sporadic axo-axonal contacts with the GnRH-IR fibers (fig. 2b, f).

Colocalization of KP, NKB and SP Immunoreactivities in Peptidergic Axons

Triple-immunofluorescent studies revealed colocalization between KP (red), NKB (blue) and SP (green) immunoreactivities in individual axons in the InfS (fig. 1s) and the neurohypophysis (fig. 1t). Notably, the colocalization was only partial; single- and double-labeled (NKB/S

and descend deeply into the stalk, some reaching the neurohypophysis. c–e As shown in high-power insets, the descending fibers often intermingle with groups of neuronal cell bodies. b, f Arrows point to the sporadic axo-axonal contacts between SP-IR and GnRH-IR axons which may underlie putative paracrine interactions. Scale bar in f corresponds to 420 μm in a and 10 μm in b–f.

(For figure see next page.)
study, we provide evidence that GnRH fibers in the human are accompanied by dense KP-IR, NKB-IR and SP-IR fiber plexuses in the postinfundibular eminence as well as throughout their lengthy course to the neurohypophysis. Occasional contacts could also be identified between these and GnRH-IR fibers in all of these regions. The close anatomical relationship of these peptidergic plexuses may allow important paracrine interactions to occur at the level of the axonal compartments. The functional importance of the massive descending peptidergic fiber projections toward the neurohypophysis requires clarification. It is possible that neuropeptides released from the varicosities of these axon plexuses reach the adenohypophysis via the short portal veins to influence gonadotroph functions. In addition, the secreted neuropeptides might directly enter the systemic circulation from the portal capillary plexuses of the postinfundibular eminence [45] and through the tuberal veins of the InfS. It is important to recognize that many neuropeptides present in the external zone of the sheep median eminence are not...
necessarily secreted in significant amounts into the hypothalamic portal blood [54] and this can also be the case in primates.

A recent study from our laboratory established that many of the KP-IR, NB-IR and SP-IR cell bodies and lower subsets of axons in the human mediobasal hypothalamus are identical, with the largest degrees of neuropeptide coexpression observed in postmenopausal women [10]. In this endocrine status, 25.1% of the NKB-IR and 30.6% of the KP-IR perikarya contained SP and 16.5% of all immunolabeled cell bodies were triple-labeled [10]. In the present study, we observed many single- and double-labeled KP-IR, NKB-IR and SP-IR fibers both in the infundibular nucleus and the InS. The much lower degree of signal coexpression in axons versus cell bodies implies that many fibers derived from KP/NKB/SP neurons only contain one or two neuropeptides in postmenopausal women. This observation raises the possibility that the axonal transport, processing and use for neurotransmission of the co-synthesized neuropeptides might be regulated depending on the functional status of these neurons. Earlier studies of the human KP and NKB systems in our laboratory already provided evidence that the extent of colocalization between KP and NKB is sex dependent [8, 26] and also age dependent, at least in men [8, 27]. In addition to this difference in the labeling of perikarya, we noticed that the neuronal contacts that these cells establish with GnRH neurons exhibit sex-specific patterns of KP/NKB co-labeling, with a significantly higher incidence of double-labeled fibers in postmenopausal women compared with age-matched men [26]. It will be important in the future to determine how the reproductive status influences neuropeptide colocalization in the axon projections of these neurons, including the plexuses we propose here to interact with the hypophysiotropic GnRH fiber projections via autocrine/paracrine peptidergic mechanisms. At present, it is impossible to determine whether or not the occasionally observed axo-axonal contacts play a significant role in this putative axo-axonal interaction.

Axo-axonal interactions taking place in the median eminence/postinfundibular eminence region have long been thought to play important roles in neuroendocrine regulation [55]. However, it is difficult to appreciate the functional significance of this putative paracrine communication only on the basis of morphological studies, given that synaptic specializations are absent from such axo-axonal contacts at the ultrastructural level [33, 56]. While the immunohistochemical demonstration of specific receptors on neuroendocrine GnRH terminals would be indicative of such a paracrine communication, the evidence for axo-axonal interactions is mostly indirect and comes from functional studies. Because in rats, the mediobasal hypothalamus is devoid of GnRH-IR cell bodies and only contains hypophysiotropic projections [57], in vitro explants of this region can be used in pharmacological studies of receptor interactions that might influence GnRH secretion at the level of the GnRH axon. For example, GnRH terminals in the median eminence of the rat are juxtaposed to glutamatergic axons [56, 58] and express immunoreactivity for the KA2 and NR1 ionotropic glutamate receptor subunits [56]. There is in vitro evidence that glutamatergic drugs can induce Ca\(^{2+}\) -dependent GnRH release from median eminence fragments in a Ca\(^{2+}\)-dependent manner [59]. It is interesting to note that the source of glutamate in this interaction may be, at least partly, intrinsic, since GnRH neurons of the adult male rat exhibit glutamatergic properties and express type 2 vesicular glutamate transporter mRNA and immunoreactivity [60]. Neuropeptide Y (NPY) also appears to act similarly on the GnRH axon terminals, in addition to occurring in axons that form axo-somatic and axo-dendritic contacts onto GnRH neurons of rats and humans [51, 61]. In rats, (a) direct appositions exist between NPY-IR and GnRH-IR axons in the median eminence [62], (b) GnRH axon terminals express Y1 receptor immunoreactivity [62] and (c) NPY agonists stimulate in vitro GnRH release from median eminence fragments [63].

While the putative presence of KISS1R on GnRH terminals has not been detected formally with immunohistochemistry, there is abundant indirect evidence to support the concept that GnRH terminals represent important physiological sites of KP action in the regulation of pulsatile GnRH secretion. Accordingly, KP-IR axons are intimately juxtaposed to GnRH-IR axons in the goat [32], monkey [19] and human [7] median eminence, and KP can stimulate GnRH release from median eminence fragments of wild-type, but not KISS1R mutant, mice [34]. This in vitro action of KP is independent of action potential generation, and thus persists in the presence of tetrodotoxin [34]. Axo-axonal communication may represent the primary mechanism, whereby KNDy neurons influence the pulsatile secretion of GnRH. Accordingly, KP release into the monkey median eminence was found to be pulsatile, with secretory peaks that coincide with the LH pulses [64]. Furthermore, the proposed axonal site of action for KP is in accordance with the observation that the peripheral injection of KP results in rapid increases of LH release [23, 35, 36, 65] which can be prevented with the GnRH antagonist acylin [65]. KP is likely to influence GnRH neurons outside the blood-brain barrier because it
does not induce c-fos expression in GnRH cell nuclei of the preoptic area. We have to recognize that systemic KP may also act in other circumventricular organs lacking the blood-brain barrier, including the organum vasculosum of the lamina terminalis. In this context, it is important to mention that recent neuroanatomical studies of the mouse organum vasculosum of the lamina terminalis identified GnRH-IR processes with dendritic characteristics and extensive branching. Direct application of KP onto these processes caused electric activity and c-Fos expression in GnRH neurons [39]. We note that the GnRH-IR innervation of the human OVLT is much less abundant in comparison with the rodent [44]; therefore, it seems more likely that the LH release induced by systemic KP injection in humans [37, 38] is caused by the excitation of hypophysiotropic GnRH axons.

The present study also provided evidence for the regional overlap and axo-axonal contacts between NKB-IR and GnRH-IR axons. Similar appositions are also detectable in the rat median eminence [14, 33], where the GnRH-IR axons express immunoreactivity for the NKB receptor NK3 [14]. While recent models of the GnRH pulse generator agree in that KP provides the major output signal of the putative pacemaker KNDy neurons toward the GnRH network [2, 3], whether or not NKB can also regulate the release of GnRH directly, remains to be established. Given that NK3 is present in KNDy neurons and the NK3 agonist senktide excites KP neurons but not GnRH neurons [28], NKB/NK3 signaling might mainly act in the intranuclear communication of KNDy neurons within the network. It is possible that NKB can also regulate NK3 axon terminals in the median eminence. In addition to exerting autocrine/paracrine actions on other KP and NKB neurons, recent studies on mice found evidence that senktide is capable of inducing GnRH release directly from the median eminence, and this action does not require KP signaling [29]. Of note, species might considerably differ in this context, and the role of KP seems to be essential for the NKB-mediated GnRH release in rhesus monkeys [16]. SP is a recently recognized neuropeptide player in the putative pulse generator KP and NKB neuronal systems. It will require clarification whether SP acts via influencing GnRH axon terminals directly or via regulating neuropeptide release from other types of fibers through autocrine/paracrine mechanisms.

In summary, in this study we provide evidence that the hypophysiotropic projections of human GnRH neurons are exposed to KP, NKB and SP in the postinfundibular eminence as well as throughout their lengthy descending projection pathway through the InfS to the neurohypophysis. Depending on the site/s of location of the SP receptor NK1, the NKB receptor NK3 and the KP receptor KISS1R, the proposed axo-axonal interaction may involve important autocrine and paracrine components. To fully understand these mechanisms, information about the cellular and subcellular localization of the neuropeptide receptors will be critical.

Acknowledgements

The research leading to these results has received funding from the National Science Foundation of Hungary (OTKA K83710, K100722, K112669), the National Development Agency (BONUS HU 08/2-2011-0006) and the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement No. 245009. WSD is funded by an NIHR Career Development Fellowship. We thank Ms. Hajni Bekó for expert technical assistance and Dr. Péter Petrusz for the rabbit SP antisera.

