Can *Glycyrrhiza glabra* L. Reduce Delirium after Coronary Artery Bypass Graft Surgery?

Abolfazl Firouzian Hadi Darvishi Khezri

Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran

Keywords

Glycyrrhiza glabra L · Cognitive brain function · Coronary artery bypass grafting

Coronary artery bypass graft (CABG) surgery is one of the most commonly performed invasive procedures worldwide [1, 2]. Since the introduction of cardiopulmonary bypass (CPB), the neurological consequence of CABG surgery has been an important subject [2]. Delirium is a major problem after CABG surgery with the approximate reported incidence rate of 20–80% [2]. This complication is associated with increased mortality, longer hospital stay, increased hospital costs, and long-term care [2–4]. Regarding the high incidence of delirium in patients undergoing CABG surgery, prophylactic treatment is preferable. Hence, pharmacological neuroprotective strategies have been developed for these patients [3, 4]. A meta-analysis indicated that preoperative low-dose and short-term administration of haloperidol or risperidone may modestly reduce delirium occurrence in high-risk patients that need intensive care unit (ICU) [4]. Other clinical trials have not reported any decreases in the incidence rate of delirium in patients receiving pharmacologic prophylactic (haloperidol, donepezil [5], citicoline [6], and rivastigmine) [7–9].

Acute inflammation and reduced serotonin neurotransmitter are the most important causes of delirium in these patients [10, 11]. In a meta-analysis, Peng et al. [12] showed the role of peripheral inflammatory markers, such as interleukin-6 and S-100β, in postoperative delirium [13]. Although some studies indicated that use of compounds with brain protective activities (such as propofol, aprotinin and lidocaine) can prevent delirium after CABG surgery, no sufficient evidence was presented to make a change in standard clinical practice.

Licorice (*G. glabra*, species: Leguminosae) is a worldwide popular herbal medicine. Just 3 out of the numerous species of licorice are usually used as commercial drugs, including *G. glabra*, *Glycyrrhiza echinata* L., and *Glycyrrhiza uralensis* Fisch. In traditional medicine, the roots and rhizomes (underground stems) of licorice are currently used as therapeutic compounds in many Asian and European countries. Licorice mainly consists of a mixture of glycyrhrizinic acid, glycyrhrizic acid, glycyrrhizin, isoflavones, isoliquiritigenin, hispaglabridin B, paratocarpin B, and glabridin. Furthermore, this plant has been used as an antiplatelet and demulcent, expectorant, antioxidant, antiulcer, laxative, antipyretic, antimicrobial, and anti-inflammatory agent [14]. Glabridin, a major active flavonoid in licorice, has anti-atherosclerotic, anti-inflammatory, anti-nephritis, radical scavenging activities and antidepressant-like effects [15]. Moreover, this compound has been reported to be useful for renovascular and cardiovascular diseases [16]. Ojha et al. [16] evaluated the cardioprotective effect of licorice against ischemia-reperfusion injury induced by ligation of left anterior descending coronary artery in rats. Their results confirmed the cardioprotective activity of licorice by alleviating oxidative stress in myocardial ischemia-reperfusion injury [16].

Safe brain-protective agents, such as licorice, could be utilized to reduce the neuroinflammation and delirium caused by CPB in these patients. Muralidharan et al. [14] investigated the cerebroprotective effect of 250 and 500 mg/kg of licorice roots in hypoxic rats and indicated that licorice has a cerebro-
protective effect. This effect may be mediated by its antioxid-
ant activities. Results of this in-vitro study showed that the
licorice extract administration could significantly reverse the
decreased levels of glutamate and dopamine and reduced ace-
tylcholinesterase (AChE) activity. Moreover, antioxidant en-
zyme levels (superoxide dismutase, glutathione peroxidase,
glutathione reductase, and catalase) were restored close to
normal range [14].

In-vitro and in-vivo analyses demonstrated that glabridin
has neuroprotective effects by enhancing the survival of neu-
rons and preventing their death and apoptosis [15]. Glabridin
is a type of isoflavonoid (isoflavane) derived from the extract
of licorice root. Yu et al. [15] showed that 25mg/kg (higher
dose) of glabridin significantly decrease the focal infarct vol-
ume, cerebral histological damage, and apoptosis induced by
middle cerebral artery occlusion in rats. Glabridin was pur-
chased from the National Institute for the Control of Pharma-
cutical and Biological Products (NICPBP) (purity 99.0%). It
was dissolved in dimethyl sulfoxide (DMSO), and freshly pre-
pared for this study. That study presented primary evidence
that glabridin exhibits neuroprotective effects via inhibition of
oductive stress. These findings indicate that glabridin had
nuroprotective effects by modulation of multiple pathways
associated with apoptosis.

Although the majority of potent antioxidants demonstrate
suitable efficacy in animal studies, there are only few studies
showing the therapeutic effects of this extract on humans.
Thus, further studies are warranted to further investigate the
biological mechanisms underlying the protective effect of
glabridin on brain and to collect evidence for clinical use of
licorice in delirium management.

In conclusion, licorice could theoretically be used as a sin-
gle supplement or in combination with other drugs to de-
crease delirium after cardiac surgery with CPB. Although
licorice and its major constituent glabridin have positive ther-
apeutic effects on human health, there are only few clinical
trials that investigate the ability of these compounds on cere-
bral protection, clinical efficacy, and the mechanism responsi-
ble for their pharmacological activities. Further research ad-
ressing the preventive role of licorice and glabridin on delir-
ium after cardiac surgery with CPB is recommended.

Disclosure Statement

The authors declare that they have no conflict of interest concerning
this manuscript.

References

 impairment after off-pump and on-pump coronary artery bypass
 graft surgery: an Iranian experience. Neuropsychiatr Dis Treat
 2010;6:775–778.
 Central nervous system complications of cardiac surgery. Br J
 disruption after cardiac surgery. AJNR Am J Neuroradiol
 patients modestly decreases delirium incidence – but not duration –
 in high-incidence samples: a meta-analysis. Gen Hosp Psychiatry
5. Sampson EL, Raven PR, Nídhlovu PN, et al.: A randomized,
 double-blind, placebo-controlled trial of donepezil hydrochloride
 (Aricept) for reducing the incidence of postoperative delirium after
 management of delirium in hospitalized adult: a systematic evidence
 prophylaxis for elderly hip-surgery patients at risk for delirium: a
 1666.
8. Gamberti M, Bolliger D, Buse GAL, et al.: Rivastigmine for the
 prevention of postoperative delirium in elderly patients undergoing
 elective cardiac surgery – a randomized controlled trial. Crit
9. Pisani MA, Murphy TE, Araujo KLB, Van Ness
 PH: Factors associated with persistent delirium after intensive care unit
 admission in an older medical patient population. J Critical Care
10. Figueroa-Ramos ML, Arroyo-Novoa CM, Lee KA,
11. Baumgartner WA: Neurocognitive changes after
 coronary bypass surgery. Circulation 2007;116:
 1879–1881.
12. Peng L, Xu L, Ouyang W: Role of peripheral inflam-
 matory markers in postoperative delirium (POCD):
13. Gorelick PB: Role of inflammation in cognitive impair-
 1207:155–162.
14. Muralidharan P, Balamurugan G, Babu V: Cere-
 broprotective effect of Glycyrrhiza glabra Linn.
 vivo neuroprotective effect and mechanisms of
 glabridin, a major active isoflavane from Glycyr-
 Glycyrrhiza glabra protects from myocardial is-
 chemia-reperfusion injury by improving hemody-
 namic, biochemical, histopathological and ventricular