Laparoscopic versus Open Obesity Surgery: A Meta-Analysis of Pulmonary Complications

Stavros Athanasios Antoniou a, b, George Athanasios Antoniou c, Oliver Owen Koch d, Gernot Köhler d, Rudolph Pointner e, Frank-Alexander Granderath a

a Center for Minimally Invasive Surgery, Hospital Neuwerk, Mönchengladbach, Germany; b Department of General Surgery, University Hospital of Heraklion, Crete, Greece; c Department of Vascular Surgery, Northern Vascular Centre, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK; d Department of General Surgery, Sisters of Charity Hospital, Linz, e Department of General Surgery, Hospital Zell am See, Zell am See, Austria

Key Words
Obesity · Laparoscopy · Pulmonary · Complication · Pneumonia · Morbidity

Abstract
The clinical effects of laparoscopy in the pulmonary function of obese patients have been poorly investigated in the past. A systematic review was undertaken, with the objective to identify published evidence on pulmonary complications in laparoscopic surgery in the obese. Outcome measures included pulmonary morbidity, pulmonary infection and mortality. The random effects model was used to calculate combined overall effect sizes of pooled data. Data are presented as the odds ratio (OR) with 95% confidence interval (CI). A total of 6 randomized and 14 observational studies were included, which reported data on 185,328 patients. Pulmonary complications occurred in 1.6% of laparoscopic and in 3.6% of open procedures (OR 0.45, 95% CI 0.34–0.60). Pneumonia was reported in 0.5% and in 1.1%, respectively (OR 0.45, 95% CI 0.40–0.51). Available evidence suggests lower pulmonary morbidity for laparoscopic surgery in obese patients; further quality studies are however necessary to consolidate these findings.

Introduction
Obesity is strongly associated with the impairment of several components of the respiratory function [1]. Mechanical and physiopathologic factors are implicated in decreased tidal and lung volumes and higher respiratory rates, whereas other components of the respiratory function remain virtually unchanged [2]. General anesthesia and abdominal surgery challenge the physiological respiratory function in obese patients [3, 4]. The incidence of clinically relevant or asymptomatic atelectasis is increased [5], whereas obesity has been recognized as an independent factor for adverse respiratory events in the postoperative period [6]. The variety of investigated anesthetic maneuvers to retain normal pulmonary function is indicative of the difficulty in managing these patients in the intraoperative and early postoperative period [7–11].

Minimization of surgical trauma by the use of laparoscopic techniques has led to a decrease in pulmonary complications in surgical procedures of the upper abdomen [12, 13]. Despite these beneficial effects of laparoscopy in non-obese patients, these may be less pronounced in the presence of obesity [14]. Higher intraabdominal pressures are usually required, in order to provide ade-
quate laparoscopic view; they adversely affect the pulmonary function due to decreased compliance of the diaphragm [15–17]. The use of additional muscle relaxants is common and represents an additional risk factor for acute respiratory events in the postoperative period [18].

This study aimed to investigate the incidence of clinical pulmonary respiratory events following laparoscopic or open surgery in obese patients. A preliminary systematic search of the literature indicated that there is limited comparative evidence on procedures other than bariatric. The investigation was thus focused exclusively on bariatric surgery, and the comparative outcomes of the laparoscopic and the open approach in terms of pulmonary morbidity and mortality.

Materials and Methods

This study followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses statement standards and the Meta-analysis Of Observational Studies in Epidemiology (MOOSE) recommendations [19, 20]. A structured protocol was conducted by the two primary authors, defining the research question, the outcome measures, the inclusion and exclusion criteria, the search methodology, and quality and reporting assessment tools of the included studies.

Outcome Parameters

The overall incidence of pulmonary complications was the primary outcome measure of treatment effect. Secondary outcome measures included the incidence of pneumonia, pleural effusion, atelectasis and death.

Inclusion and Exclusion Criteria

Studies comparing a common bariatric procedure through the laparoscopic or the open approach were included. The reported minimum body mass index (BMI) had to be 30 kg/m², and the study protocol had to include adult patients. Studies not reporting on minimum BMI, not comprising similar and homogeneous procedures, and those not reporting on any of the primary outcome measures were excluded. Corresponding authors of studies which did not report on minimum BMI were contacted by e-mail and were requested to provide this information.

Search Methodology

The MEDLINE database was searched using the PubMed platform from inception up to October 2013. The keywords ‘laparoscopic’ OR ‘open’ OR ‘conventional’ AND ‘obese’ OR ‘obesity’ OR ‘bariatric’ OR ‘body mass index’ OR ‘BMI’ AND ‘complications’ OR ‘morbidity’ OR ‘pulmonary’ OR ‘respiratory’ OR ‘pneumonia’ OR ‘chest infection’ OR ‘atelectasis’ OR ‘pleural effusion’ were used. The search was limited to records written in the English or German and providing an abstract. The first-level screening included the titles and summaries; if a publication was considered to meet the inclusion criteria, the full text was obtained for a second-level screening. If the full text could not be accessed, the corresponding author was contacted by e-mail and was requested to provide an electronic reprint of the article. The primary author performed the first-level search; two authors independently screened and extracted data from the full records.

Data Extraction

Relevant information from each article was entered in a pre-structured electronic database, based on the Cochrane Consumers and Communication Review Group’s data extraction template, which was pilot-tested on the three most recent studies and refined accordingly. The following data were extracted: name of the primary author, year of publication, primary center performing the investigation, patient recruitment period, study design, absolute number of patients assigned to the laparoscopic or the open procedure, mean or median age, mean or median BMI, surgical procedure, duration of follow-up, intention-to-treat or as-treated analysis, and the outcome measures, as defined.

Assessment of Methodological and Reporting Quality

Randomized trials were subjected to methodological quality assessment using the Cochrane Collaboration’s Tool for assessing risk of bias [21]. This tool considers the sequence generation, allocation concealment, blinding of participants, personnel, and outcome assessors, inadequately reported or missing outcome data, selective outcome reporting, and other potential threats to validity.

The quality of observational studies was assessed using the Newcastle-Ottawa Quality Assessment Scale for case control studies or cohort studies (as applicable) [22]. This tool evaluates three main methodological elements of case-control studies: selection methods (adequate case definition, representativeness of the cases, appropriate selection and definition of controls), comparability of cases and controls on the basis of the design or analysis, and assessment of exposure (ascertainment of exposure, non-response rate). The scale uses a star system, with a maximum of nine stars.

Methods of Analysis

Individual study odds ratios (ORs) and 95% confidence intervals (CIs) were calculated from event numbers extracted from each study before data pooling. Summary estimates of ORs were obtained with a random effects model according to DerSimonian and Laird [23]. Heterogeneity was assessed using the I² statistic, a method expressing the percentage of variation across studies. I² values between 0 and 25% suggest low level, values above 25% suggest moderate level, and values above 75% suggest high level of heterogeneity. Publication bias was assessed visually evaluating the symmetry of funnel plots. Statistical analysis was performed using RevMan (Review Manager 5.2, The Nordic Cochrane Centre, Copenhagen, Denmark). Formal statistical expertise was provided by one of the study authors (G.A.A.).

Results

Search Results

The search of the electronic databases identified 1,520 unique records. Some 1,407 articles were excluded on the basis of their title or abstract not being relevant, leav-
ing 113 articles for full text review. Five articles could not be retrieved from national and international libraries and the corresponding authors did not respond to our request for the full record. Eighteen articles did not report on the BMI of the study population. The authors were contacted and were asked to provide additional relevant information. Twelve authors responded and provided relevant data; nine studies fulfilled the inclusion criteria and were included in the analysis. A total number of 20 articles entered the meta-analysis models (fig. 1) [24–43].

Study Characteristics
An overview of characteristics of the included studies is presented in table 1. All articles were published in the English language and publication time ranged between 1999 and 2012. A total of 185,528 patients were included in 6 randomized trials, 3 prospective and 10 retrospective observational studies, whereas design characteristics were not defined in one report. In three studies, patient data and outcomes were recruited from large prospectively designed databases. Roux-en-Y gastric bypass was the most common procedure and was reported in 16 studies. Outcomes were reported on an intention-to-treat basis in 10 studies, as-treated analysis was followed in 2 studies, whereas 8 studies did not provide relevant information (data not shown). Pleural effusion was not reported in any study and atelectasis was reported only by one study, which precluded pooled analysis.

Quality Assessment
Methodological quality of randomized trials was in general adequate, although 2 studies only reported on appropriate blinding of patients and assessors and 4 reported on valid sequence generation (quality assessment of randomized trials available upon request). Observational studies were of moderate quality, with a median of 5 stars (range 3–7).

Synthesis of Data
Pulmonary complications occurred in 1.6% of laparoscopic and in 3.6% of open procedures (OR 0.45, 95% CI 0.34–0.60). A moderate level of heterogeneity was evident, and the possibility of publication bias was high (fig. 2, 3).

Pulmonary infection was reported in 0.5 and in 1.1% of laparoscopic and open procedures, respectively (OR 0.45, 95% CI 0.40–0.51). No evidence of heterogeneity existed, whereas the possibility of publication bias was low (fig. 4, 5).

All-cause mortality was 0.1% in the laparoscopic group and 0.4% in the open group (OR 0.35, 95% CI 0.20–0.62). There was no evidence of between-study heterogeneity or publication bias (fig. 6, 7). A summary of individual study outcomes is provided in table 2.

Sensitivity Analysis
Outcome data from large population-based studies were excluded [34, 36, 43], in order to reduce selection bias. ORs were constantly in favor of laparoscopy (OR for pulmonary complications 0.49, 95% CI 0.32–0.75; OR for pneumonia 0.45, 95% CI 0.15–1.33; OR for mortality 0.41, 95% CI 0.16–1.10), although statistical significance was reached only for pulmonary complications.
Table 1. Study characteristics

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Period of recruitment</th>
<th>Study design</th>
<th>No. of patients</th>
<th>Laparoscopic</th>
<th>Open</th>
<th>BMI</th>
<th>Surgical procedure</th>
<th>NOS stars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bleier, 2000 [25]</td>
<td>1998–1999</td>
<td>Prospective</td>
<td>92</td>
<td>46</td>
<td>46</td>
<td>mean 55.0±1.6 lap, 50.4±1.4 open</td>
<td>VBG</td>
<td>3</td>
</tr>
<tr>
<td>Nguyen, 2001 [27]</td>
<td>1999–2000</td>
<td>RCT</td>
<td>70</td>
<td>36</td>
<td>34</td>
<td>mean 48±5 lap, 50±5 open</td>
<td>RYGB</td>
<td>NA</td>
</tr>
<tr>
<td>Nguyen, 2001 [28]</td>
<td>1999–2001</td>
<td>RCT</td>
<td>155</td>
<td>79</td>
<td>76</td>
<td>mean 47.6±4.7 lap, 48.4±5.4 open</td>
<td>RYGB</td>
<td>NA</td>
</tr>
<tr>
<td>Smith, 2004 [32]</td>
<td>2000–2002</td>
<td>Retrospective</td>
<td>779</td>
<td>328</td>
<td>451</td>
<td>mean 46.7 lap, 49.5 open</td>
<td>RYGB</td>
<td>6</td>
</tr>
<tr>
<td>Hutter, 2006 [34]</td>
<td>2000–2003</td>
<td>Prospective database*</td>
<td>1,356</td>
<td>401</td>
<td>955</td>
<td>mean 47.5 lap, 50.5 open</td>
<td>RYGB</td>
<td>5</td>
</tr>
<tr>
<td>Agaba, 2008 [37]</td>
<td>1998–2004</td>
<td>Retrospective</td>
<td>1,367</td>
<td>806</td>
<td>561</td>
<td>mean 46.2±4.7 lap, 47.6±5.7 open</td>
<td>RYGB</td>
<td>6</td>
</tr>
<tr>
<td>Benotti, 2009 [38]</td>
<td>2006–2006</td>
<td>Retrospective</td>
<td>881</td>
<td>415</td>
<td>446</td>
<td>mean 48.7±5.6 lap, 53.6±9.0 open</td>
<td>RYGB</td>
<td>6</td>
</tr>
<tr>
<td>de Wit, 2011 [41]</td>
<td>1995–1997</td>
<td>RCT</td>
<td>50</td>
<td>25</td>
<td>25</td>
<td>mean 51.3±10.4 lap, 49.7±5.6 open</td>
<td>AGB</td>
<td>NA</td>
</tr>
<tr>
<td>Skroubis, 2011 [42]</td>
<td>1994–2008</td>
<td>Retrospective</td>
<td>227</td>
<td>137</td>
<td>90</td>
<td>mean 46.4±3.3 lap, 45.6±5.2 open</td>
<td>RYGB</td>
<td>6</td>
</tr>
</tbody>
</table>

BMI = Body mass index; NOS = Newcastle-Ottawa scale; RCT = randomized controlled trial; NR = not reported; NA = not applicable; lap = laparoscopic; VBG = vertical banded gastroplasty; RYGB = Roux-en-Y gastric bypass; BPD-DS = biliopancreatic diversion with duodenal switch; AGB = adjustable gastric banding.

* National Surgical Quality Improvement Program of the American College of Surgeons (ACS-NSQIP); † University Health System Consortium; ‡ Nationwide Inpatient Sample.
This systematic literature analysis aimed primarily to assess pulmonary morbidity in laparoscopic and open surgery, on the basis of the ambiguous effects of laparoscopy on the pulmonary function in obese patients. The volume of relevant data outside the field of obesity surgery was surprisingly scarce, which prompted the research team to modify the study protocol and focus exclusively on operations for obesity. The objective was to minimize systematic bias related to the spectrum of upper and lower gastrointestinal surgery. Heterogeneity was reduced to some extent, since all studies assessed upper gastrointestinal operations and 16 articles included only Roux-en-Y bypass procedures. Because the main body of data derives from observational studies with study groups of heterogeneous demographical data, the random-effects model was applied to decrease the possibility of overestimating treatment effects. Nevertheless, selection bias introduced by the retrospective and open-label study

Discussion

This systematic literature analysis aimed primarily to assess pulmonary morbidity in laparoscopic and open surgery, on the basis of the ambiguous effects of laparoscopy on the pulmonary function in obese patients. The volume of relevant data outside the field of obesity surgery was surprisingly scarce, which prompted the research team to modify the study protocol and focus exclusively on operations for obesity. The objective was to minimize systematic bias related to the spectrum of upper and lower gastrointestinal surgery. Heterogeneity was reduced to some extent, since all studies assessed upper gastrointestinal operations and 16 articles included only Roux-en-Y bypass procedures. Because the main body of data derives from observational studies with study groups of heterogeneous demographical data, the random-effects model was applied to decrease the possibility of overestimating treatment effects. Nevertheless, selection bias introduced by the retrospective and open-label study
Table 1

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Laparoscopic</th>
<th>Open</th>
<th>Odds Ratio</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>Events</td>
<td>Total</td>
</tr>
<tr>
<td>Azagra</td>
<td>1</td>
<td>34</td>
<td>0</td>
<td>34</td>
</tr>
<tr>
<td>Bleier</td>
<td>0</td>
<td>46</td>
<td>1</td>
<td>46</td>
</tr>
<tr>
<td>Courcoulas</td>
<td>1</td>
<td>80</td>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>Lujan</td>
<td>0</td>
<td>53</td>
<td>3</td>
<td>51</td>
</tr>
<tr>
<td>Smith</td>
<td>1</td>
<td>328</td>
<td>8</td>
<td>451</td>
</tr>
<tr>
<td>Hutter</td>
<td>5</td>
<td>401</td>
<td>22</td>
<td>955</td>
</tr>
<tr>
<td>Campos</td>
<td>2</td>
<td>332</td>
<td>3</td>
<td>72</td>
</tr>
<tr>
<td>Agaba</td>
<td>3</td>
<td>806</td>
<td>1</td>
<td>561</td>
</tr>
<tr>
<td>Banka</td>
<td>576</td>
<td>115,177</td>
<td>452</td>
<td>41,094</td>
</tr>
</tbody>
</table>

Total (95% CI) 117,197 | 43,344 | 100.0% | 0.45 [0.40, 0.51] |

Heterogeneity: Tau² = 0.00; Chi² = 7.77, df = 8 (p = 0.46); I² = 0%
Test for overall effect: Z = 12.77 (p < 0.00001)

Fig. 4
Forest plot of odds ratios for pneumonia.

Fig. 5
Funnel plot for pneumonia.

Table 2

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>Laparoscopic</th>
<th>Open</th>
<th>Odds Ratio</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>Events</td>
<td>Total</td>
</tr>
<tr>
<td>Nguyen 3</td>
<td>0</td>
<td>79</td>
<td>1</td>
<td>76</td>
</tr>
<tr>
<td>Courcoulas</td>
<td>0</td>
<td>80</td>
<td>1</td>
<td>80</td>
</tr>
<tr>
<td>Kim 1</td>
<td>2</td>
<td>26</td>
<td>1</td>
<td>28</td>
</tr>
<tr>
<td>Lujan</td>
<td>1</td>
<td>53</td>
<td>0</td>
<td>51</td>
</tr>
<tr>
<td>Campos</td>
<td>0</td>
<td>332</td>
<td>1</td>
<td>72</td>
</tr>
<tr>
<td>Nguyen 4</td>
<td>16</td>
<td>16,357</td>
<td>18</td>
<td>6,605</td>
</tr>
<tr>
<td>Agaba</td>
<td>0</td>
<td>806</td>
<td>2</td>
<td>561</td>
</tr>
<tr>
<td>Kim 2</td>
<td>2</td>
<td>348</td>
<td>6</td>
<td>314</td>
</tr>
</tbody>
</table>

Total (95% CI) 18,081 | 7,247 | 100.0% | 0.35 [0.20, 0.62] |

Total events 21 | 30

Heterogeneity: Tau² = 0.00; Chi² = 5.25, df = 7 (p = 0.63); I² = 0%
Test for overall effect: Z = 3.66 (p = 0.0002)

Fig. 6
Forest plot of odds ratios for mortality.
Table 2. Study outcomes

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Pulmonary complications</th>
<th>Pneumonia</th>
<th>Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lap open</td>
<td>lap open</td>
<td>lap open</td>
</tr>
<tr>
<td>Azagra, 1999 [24]</td>
<td>NR NR</td>
<td>1/34 0/34</td>
<td>0/34 0/34</td>
</tr>
<tr>
<td>Nguyen, 2000 [26]</td>
<td>1/35 1/35</td>
<td>NR NR</td>
<td>0/35 0/35</td>
</tr>
<tr>
<td>Nguyen, 2001 [27]</td>
<td>0/36 0/36</td>
<td>0/36 0/36</td>
<td>NR NR</td>
</tr>
<tr>
<td>Nguyen, 2001 [28]</td>
<td>0/79 1/76</td>
<td>NR NR</td>
<td>0/79 1/76</td>
</tr>
<tr>
<td>Courcoulas, 2003 [29]</td>
<td>NR NR</td>
<td>1/80 0/80</td>
<td>0/80 1/80</td>
</tr>
<tr>
<td>Luján, 2004 [31]</td>
<td>NR NR</td>
<td>0/53 3/51</td>
<td>1/53 0/51</td>
</tr>
<tr>
<td>Sundbom and Gustavsson, 2004 [33]</td>
<td>8/25 5/25</td>
<td>NR NR</td>
<td>0/25 0/25</td>
</tr>
<tr>
<td>Hutter, 2006 [34]</td>
<td>13/401 47/955</td>
<td>5/401 22/955</td>
<td>0/401 0/955</td>
</tr>
<tr>
<td>Nguyen, 2007 [36]</td>
<td>115/16,357 133/6,065</td>
<td>98/16,357 73/6,065</td>
<td>16/16,357 18/6,065</td>
</tr>
<tr>
<td>Agaba, 2008 [37]</td>
<td>NR NR</td>
<td>3/806 1/561</td>
<td>0/806 2/561</td>
</tr>
<tr>
<td>Benotti, 2009 [38]</td>
<td>7/415 24/446</td>
<td>NR NR</td>
<td>0/415 0/446</td>
</tr>
<tr>
<td>Barbalho-Moulim, 2011 [40]</td>
<td>NR NR</td>
<td>0/13 0/13</td>
<td>NR NR</td>
</tr>
<tr>
<td>de Wit, 1999 [41]</td>
<td>2/25 2/25</td>
<td>NR NR</td>
<td>0/25 0/25</td>
</tr>
<tr>
<td>Skroubis, 2011 [42]</td>
<td>1/137 2/90</td>
<td>NR NR</td>
<td>0/137 0/90</td>
</tr>
</tbody>
</table>

NR = Not reported; lap = laparoscopic.
design by several reports carry inevitable bias of indeterminate weight.

The pooled outcome estimates of the present analysis were in favor of the laparoscopic approach for the outcome measures pulmonary complications, pneumonia and mortality; however, careful consideration of internal and external sources of bias must be taken into account. The pooled weight of three population-based databases accounted for 68.5–98.3% of treatment effect, depending on the investigated outcome. Exclusion of these studies from the meta-analysis resulted in the reduction of ORs for all outcome parameters, although outcomes were constantly in favor of laparoscopy. Furthermore, due to the low incidence of pulmonary complications and the poor reporting of individual studies, no conclusions with regard to a potential association between pulmonary morbidity and mortality can be drawn.

The main methodological shortcoming of the present analysis is its limited external validity. Although the treatment effects apply to laparoscopic surgery of the upper abdomen, several factors have to be considered before being able to interpret the results. Several bariatric operations include manipulations in the upper and the lower abdomen, which requires transition from reverse Trendelenburg position to the supine position, and may result in changes in cardiac output and pulmonary circulation, especially in obese patients [44–47]. Furthermore, different procedures carry various risks of pulmonary complications [48]. Additionally, longer duration of surgery may result in increased pulmonary morbidity [49]; this factor could not however be taken into account in this analysis.

An apparent strength of the study is the adequate number of included reports, the large patient population and the extensive period of treatment, from the first decade of laparoscopic surgery for obesity up to present data. The likelihood of publication bias was low for the condition-specific outcome of pneumonia. The treatment effect of the laparoscopic and the open approach has resulted in distinct clinical outcomes and this was reflected in large treatment effects.

It is reasonable to argue that laparoscopy may be advantageous to open surgery in obese patients, although the available body of evidence derives mainly from observational studies, which appraised bariatric operations. The comparative clinical effect of laparoscopic surgery on pulmonary morbidity in obese patients remains a field of future investigation. More importantly, researchers are urged to provide detailed information on pulmonary complications in their reports. Because obese patients account for a limited proportion of study populations, high-quality studies may include subgroup analyses or provide separate demographic and outcome data on obese patients. This approach allows for systematic and pooled analysis of homogeneous data in order to arrive at a valid clinical conclusion.

The comparative effect of laparoscopic and open surgeries on pulmonary complications of obese patients remains unclear. The available data have their origin from studies on bariatric surgery. Current evidence suggests lower pulmonary morbidity for laparoscopic surgery.

Disclosure Statement

The authors have no conflicts of interests related to this work to disclose.

Acknowledgments

The authors wish to thank Noel Williams, Ninh Nguyen, John Morton, Anita Courcoulas, Kenneth Jones, Peter Benotti, Fotis Kalfaretzos, William Encinosa and Richard Marsk for providing supplementary information to their study data, and Torsten Olbers for providing the electronic reprint of his article. The kind support of Mrs. Aggeliki Zachou, clinical librarian at the Papa-georgiou University Hospital of Thessaloniki, Greece, is greatly acknowledged.

Source of Funding

None.

References

Influence of pneumoperitoneum and patient positioning on respiratory system compli-

Murphy GS, Brull SJ. Residual neuromuscu-
lar block: lessons unlearned. Part I: defini-
tions, incidence, and adverse physiologic ef-
fects of residual neuromuscular block. Anesth
Anaesth 2010;111:120–128.

Liberati A, Altman DG, Tetzlaff J,Mulrow C, Gøtzsche PC, Ioannidis JP, Clarke M, De-
vereaux PJ, Kleijnen J, Moher D: The PRISMA
proposal for reporting. Meta-analysis Of
Observational Studies in Epidemiology (MOOSE) group. JAMA 2000;283:2008–
2012.

Higgins JP, Altman DG: Assessing risk of bias
in included studies; in Higgins JP, Green S (eds): Cochrane Handbook for Systematic
Reviews of Interventions. West Sussex, John

Wells GA, Shea B, O’Connell D, Peterson J,
Wells GA, Shea B, O’Connell D, Peterson J,
Ottawa Scale (NOS) for assessing the quality
of nonrandomised studies in meta-analyses.
http://www.ohri.ca/programs/clinical-
epidemiology/oxford.asp (accessed June 11,
2013).

DerSimonian R, Laird N: Meta-analysis in
188.

Azagra JS, Goergen M, Ansay J, De Simone
P, Vanhuysbeke M, Devuyst L, Squealet J:
Laparoscopic gastric reduction surgery. Pre-
liminary results of a randomized, prospec-
tive trial of laparoscopic vs open vertical
banded gastroplasty. Surg Endosc 1999;13:
555–558.

Bleier JI, Krupnick AS, Kreisel D, Song HK,
Rosato EF, Williams NN: Hand-assisted lapa-
roscopic vertical banded gastroplasty: early

Nguyen NT, Ho HS, Palmer LS, Wolfe BM: A
comparison study of laparoscopic versus
open gastric bypass for morbid obesity. J Am
Coll Surg 2000;191:149–155; discussion 155–
157.

Nguyen NT, Lee SL, Goldman C, Fleming N,
Arango A, McFall R, Wolfe BM: Comparison
of pulmonary function and postoperative
pain after laparoscopic versus open gastric
bypass: a randomized trial. J Am Coll Surg

Nguyen NT, Goldman C, Rosenquist CJ,
Arango A, Cole CJ, Lee SJ, Wolfe BM: Laparo-
scopic versus open gastric bypass: a ran-
donized study of outcomes, quality of life,
and costs. Ann Surg 2001;234:279–289; dis-

cussion 289–291.

Courcoulas A, Perry Y, Buenaventura P,
Luketich J: Comparing the outcomes after
laparoscopic versus open gastric bypass: a
matched paired analysis. Obes Surg 2003;13:
341–346.

Kim WW, Gagner M, Kini S, Inabnet WB,
Quinn T, Herron D, Pomp A: Laparoscopic
vs. open biliopancreatic diversion with du-
odenal switch: a comparative study. J Gastro-

Lujan JA, Frutos MD, Hernández Q, Liron R,
Cuenca JR, Valero G, Parrilla P: Laparoscopic
versus open gastric bypass in the treatment of
morbid obesity: a randomized prospective

Smith SC, Edwards CB, Goodman GN, Halv-
ersen RC, Simper SC: Open vs laparoscopic
Roux-en-Y gastric bypass: comparison of op-
erative morbidity and mortality. Obes Surg
2004;14:73–76.

Sundbom M, Gustavsson S: Randomized clin-
tical trial of hand-assisted laparoscopic versus
open Roux-en-Y gastric bypass for the treat-
ment of morbid obesity. Br J Surg 2004;91:
418–423.

Hutter MM, Randall S, Khuri SF, Henderson
WG, Abbott WM, Warshaw AL: Laparoscopic
versus open gastric bypass for morbid obe-
sity: a multicenter, prospective, risk-adjusted
analysis from the National Surgical Quality
Improvement Program. Ann Surg 2006;243:
657–662; discussion 662–666.

Campos GM, Ciovica R, Rogers SJ, Posselt
AM, Vittinghoff E, Takata M, Cello JP: Spec-
trum and risk factors of complications after
discussion 976.

Nguyen NT, Hinojosa M, Fayad C, Varela E,
Wilson SE: Use and outcomes of laparoscopic
versus open gastric bypass at academic med-
ic centers. J Am Coll Surg 2007;205:
248–255.

Agaba EA, Shamseddien H, Gentles CV, Sash-
thakonar V, Gellman L, Gadaleta D: Laparo-
scopic vs open gastric bypass in the manage-
ment of morbid obesity: a 7-year retrospective
study of 1,364 patients from a single center.

Benotti PN, Still CD, Wood GC, Akmal Y,
King H, El Arousy H, Dancea H, Gerhard GS,
Petrick A, Strodel W: Preoperative weight
before bariatric surgery. Arch Surg 2009;144:
1150–1155.

Kim JJ, Schirmer B: Safety and efficacy of si-
multaneous cholecystectomy at Roux-en-Y
gastric bypass. Surg Obes Relat Dis 2009;5:
48–53.

Barbalho-Moulim MC, Miguel GP, Forti EM,
César Mde C, Azevedo JL, Costa D: Silicone-
ering Roux-en-Y gastric bypass in the treat-
ment of obesity: effects of laparoscopic versus
laparotomic surgery on respiration. Obes

de Wit LT, Mathus-Vliegen L, Hey C, Rade-
maker B, Gouma DJ, Obertop H: Open versus
laparoscopic adjustable silicone gastric band-
ing: a prospective randomized trial for treat-
ment of morbid obesity. Ann Surg 1999;230:
800–805; discussion 805–807.

