Cardiac Toxicity after Radiotherapy for Breast Cancer: Myths and Facts

Mirko Nitschea, b, René Pahlb, Karen Huberb, Kirsten Eilfb, Juergen Dunstb

aZentrum für Strahlentherapie und Radioonkologie, Bremen/Westerstede, Germany; bKlinik für Strahlentherapie, Karl-Lennert-Krebszentrum, Universität Kiel, Germany

Keywords
Breast cancer · Cardiotoxicity · Radiotherapy

Summary
Radiotherapy is an important component in the multidisciplinary treatment of breast cancer. In recent years, the cardiac risks of radiation have been discussed several times. This problem has long been known and resolved from the radiotherapeutic point of view. The current data is briefly described here.

Introduction
It is well known since the first meta-analysis by Cuzick and colleagues [1] from the 1980s (incidentally one of the first meta-analyses in medicine at all) that postoperative radiation therapy in breast cancer may have adverse effects in long-term survivors. Even then, an increased mortality was observed in long-term survivors.

In studies that were started after 1982 [2], these adverse effects of radiotherapy have not been observed anymore (table 1). The positive effects of radiotherapy therefore came more into play. With increasing follow-up, the weight of these recent studies in the meta-analyses has grown. This is surely one of the reasons why the survival benefit of radiotherapy has become increasingly apparent [3, 4]. On the basis of Scandinavian studies and cancer registries, a higher rate of cardiac deaths could be identified as the cause for increased long-term mortality. This was significant only in patients with left-sided breast cancer. Therefore, the radiation exposure of the heart was suspected as the cause. Detailed studies primarily from Scandinavia were able to demonstrate a clear dose-response relationship. This dose effect was already detected in the 2005 meta-analysis of the Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) [3] (table 2). Since then, these consolidated findings have been consistently taken into account for modern radiotherapy treatment planning [5]. The analysis recently published in the New England Journal of Medicine is merely an update of the above-cited data and confirms the facts known for years [6].

Cardiotoxicity of Radiotherapy

Pathophysiology and Epidemiology
Cardiotoxicity after radiation therapy is not new and was already described in detail in the 1970s; clinical research at that time focused on young patients with mantle irradiation for Hodgkin’s disease. This treatment technique delivered high radiation doses to large proportions of the heart. Generally, pericarditis was observed as acute and late toxicity at that time, as well as congestive heart failure, ischemic coronary artery disease, arrhythmia, or myocardial infarction [7–9]. The leading cause of non-cancer mortality among long-term survivors after radiotherapy for Hodgkin’s lymphoma was cardiovascular death [10]. It should be noted that radiation doses applied to the whole heart have been much higher than in the treatment of breast cancer, even in those times [11–13]. In Scandinavian breast cancer studies, mainly an increased incidence of ischemic events and unclear cardiac deaths was observed [2, 6].

The exact cause of cardiotoxicity after radiotherapy for breast cancer is not clear [14]. Based on the clinical data and animal experiments, various causes of radiogenic cardiac toxicity are discussed. Experimental evidence suggests indirect harmful effects of microvascular and macrovascular damage on the myocytes. It has been postulated that radiotherapy leads to an acute inflammation within the heart blood capillaries and to continuous inflammatory

Downloaded by: 54.70.40.11 - 11/20/2017 2:50:43 AM
Radiotherapy for left-sided breast cancer was associated with left ventricle (LV) volume and risk factors for coronary artery (LAD) distribution SPECT changes with percent irradiation (SPECT) in 69 patients. They correlated left anterior descending heart perfusion changes with single-photon emission tomography (SPECT). Lind et al. [17] evaluated post-radiation regional myocardial dose on specific cardiac structures in patients undergoing radiotherapy. Several studies deal with the effect of myocardial injury [16]. Perhaps, a combination of all factors plays a role. Further on, this could lead to ischemia and myocardial cell death. Cardiac tissue is replaced by fibrotic tissue, as the myocytes have no ability to divide [15]. Subsidiary, radiation also induces an inflammatory process in the major arteries of the heart, leading to accelerated atherosclerosis. Endothelial cell damage and transmigration of monocytes into the intima lead to the ingestion of lipoproteins and the formation of fatty streaks [15]. Therefore, it is quite comprehensible that epidemiologic studies detected baseline risk factors as independent risk factor for cardiovascular processes, resulting in endothelial cell proliferation and formation of fibrin thrombi with obstruction of the myocardial capillary lumen. Further on, this could lead to ischemia and myocardial cell death. Cardiac tissue is replaced by fibrotic tissue, as the myocytes have no ability to divide [15]. Subsidiary, radiation also induces an inflammatory process in the major arteries of the heart, leading to accelerated atherosclerosis. Endothelial cell damage and transmigration of monocytes into the intima lead to the ingestion of lipoproteins and the formation of fatty streaks [15]. Therefore, it is quite comprehensible that epidemiologic studies detected baseline risk factors as independent risk factor for cardiovascular disease after radiotherapy. Those risk factors are age, hypertension, diabetes mellitus, total cholesterol, family history of early myocardial infarction, and smoking [15]. In animal experiments, changes in the density of beta-receptors are observed at low doses of radiation to the heart. It has been suggested that the increased stimulation of the sympathetic nerve serves to compensate subclinical myocardial injury [16]. Perhaps, a combination of all factors described above plays a role. Several studies deal with the effect of dose on specific cardiac structures in patients undergoing radiotherapy. Lind et al. [17] evaluated post-radiation regional myocardial heart perfusion changes with single-photon emission tomography (SPECT) in 69 patients. They correlated left anterior descending artery (LAD) distribution SPECT changes with percent irradiated left ventricle (LV) volume and risk factors for coronary artery disease. Radiotherapy for left-sided breast cancer was associated with short-term SPECT defects in vascular distribution, corresponding to the radiation portals 6 months after radiotherapy. They did not find increases in SPECT defects in heart regions outside the tangential photon beams. Factors related to the extent of perfusion defects were the percent irradiated LV, hormonal treatment, and pre-radiotherapy hypercholesterolemia. None of the patients experienced clinically significant short-term cardiac events like myocardial infarction, but it clearly shows the impact of radiotherapy on microvascularization in the myocardium. There is currently no defined threshold dose for the LAD and the definition of the LAD as organ at risk is difficult in its reproducibility [18]. Pericardial effusion (PE) in the treatment of breast cancer is a very rare effect. Wei et al. [19] reported about PE in patients treated for esophageal cancer. The greatest risk was shown for patients with an irradiated heart volume of more than 46% with 30 Gy, resulting in 73% PE. Those doses are far from achieved in radiotherapy for breast cancer, so that the pericardium as organ at risk does not play a definite role in breast cancer radiotherapy. The same applies to the aortic bulb and the valvular plane. The incidence of valvular disease is only related to mediastinal radiation doses > 30 Gy and younger age at irradiation, which was shown for survivors of Hodgkin’s disease. After 20 years of follow-up, Machann et al. [20] performed cardiac magnetic resonance imaging in 36 patients and revealed a hemodynamically relevant valvular dysfunction in 13 patients and a perfusion deficit in 21 patients.

Table 1. Increased cardiac mortality only in old studies

<table>
<thead>
<tr>
<th>Patient enrolment, years</th>
<th>Increase in risk for cardiac death (hazard ratio) in follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Up to 10 years</td>
</tr>
<tr>
<td>1973–1982</td>
<td>1.19</td>
</tr>
<tr>
<td>1983–1992</td>
<td>0.99</td>
</tr>
<tr>
<td>1993–2002</td>
<td>0.97</td>
</tr>
<tr>
<td>2003–2008</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Irradiated patients had a higher rate of cardiac deaths compared to the control group without irradiation. When listing the studies in chronological order, this was only significant in studies that recruited until 1982 (significant risks are highlighted in the table in italics). In studies with recruitment from 1983 to 1992, a very small, not more significant risk resulted after more than 15 years. In subsequent work, increased cardiac mortality was no longer observed (modified from [2]).

Table 2. Data of the EBCTCG, evaluation 2005

<table>
<thead>
<tr>
<th>Heart dose range (mean)</th>
<th>Total number of patients</th>
<th>Cardiac events in irradiated patients</th>
<th>Cardiac events in non-irradiated patients</th>
<th>Hazard ratio for annual risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–5 Gy (3 Gy)</td>
<td>9,982</td>
<td>2.9%</td>
<td>2.4%</td>
<td>1.08 (n.s.)</td>
</tr>
<tr>
<td>5–15 Gy (9 Gy)</td>
<td>7,850</td>
<td>5.4%</td>
<td>3.8%</td>
<td>1.32</td>
</tr>
<tr>
<td>> 15 Gy (17 Gy)</td>
<td>2,265</td>
<td>11.0%</td>
<td>6.4%</td>
<td>1.63</td>
</tr>
</tbody>
</table>

Irradiated patients had a higher rate of cardiac deaths. In the low-dose group, this effect was not significant. In the group with higher radiation doses, cardiac events even increased in the control group without irradiation. This can be explained mainly by the fact that high doses of radiation were used in the earliest studies with long follow-up and thus higher cardiac risk became apparent in non-irradiated patients in the control group. As a consequence of the data, one should have an average heart dose of less than 3–5 Gy in modern technology. Under these conditions, there is no significant cardiac risk [3].
Cardiac Toxicity after Radiotherapy for Breast Cancer

Discussion

The recently published analysis of Darby et al. [6] confirms well-known data on cardiac risks in ancient studies and has identified a dose-response relationship, but it gives no conclusive answer to the most important question of how best to protect the heart against radiation toxicity. The cardiac radiation doses in the meta-analysis are rough estimates of each individual patient because 3-dimensional treatment planning with calculation of cardiac doses (which is the contemporary standard) was not yet possible [21]. Furthermore, only mean heart doses were presented in the analyses. The authors of the New England Journal of Medicine article concluded that all exposure of the heart to radiation is associated with an increased risk. From the radiotherapeutic point of view, this conclusion is unsustainable after careful analysis of the presented data. It is most likely that there is a threshold dose, and probably a volume effect. Unfortunately, neither a critical volume nor a critical threshold dose can be exactly determined based on these historical studies. In studies with modern technology (as of 1990), no increased rate of cardiac risks was observed [2]. In recent prospective studies, in which the heart dose was calculated as part of the treatment planning, the mean heart doses are well below the dose of 3 Gy, which is the threshold dose for a significant cardiac effect recently reported by Darby et al. [6]. As evidence for this low cardiac stress, we can refer to our recent multicenter ARO-2010-01 study. An innovative fractionation schedule (hypofractionation with integrated boost) was tested, and doses to organs at risk were routinely determined and documented during treatment planning. The mean heart dose was only 1.48 ± 0.9 Gy (n = 151) [22]. Analyzing the more common normofractionated standard adjuvant tangential radiotherapy in breast cancer, another one of our own recent treatment studies also proved low cardiac toxicity. We found a mean heart dose of 3.9 Gy (range 1.7–6.1 Gy, standard deviation (SD) 2.2 Gy), using a widespread modern computed tomography (CT)-based 3-dimensional radiotherapy planning [23]. The irradiation dose to the heart is low even when the planning target volume (PTV) is enlarged in comparison to routinely standard tangential radiotherapy, as demonstrated by the recently completed European Organisation for Research and Treatment of Cancer (EORTC) study 22922. The study showed an advantage of additional irradiation of the parasternal lymph nodes. No increased cardiac mortality was seen although, from experience, the highest cardiac doses result from the irradiation of the parasternal lymph nodes [24]. Even in the combination of radiation therapy and chemotherapy with cardiotoxic drugs (e.g. anthracyclines, trastuzumab), no increased risk due to radiotherapy was observed [25–27]. The cardiac risk of radiotherapy in breast cancer is certainly less than the risks of several drug therapies. However, up to now, it still remains unclear if late effects after combination of both therapies can become manifest in old age with decreasing compensation ability of the heart. Finally, this is not a specific radiotherapeutic problem [27].

New Techniques for Cardiac Protection

At present, the deep inspiration breath hold technique (DIBH) is increasingly used more or less routinely [28–30]. In deep inspiration, the heart sinks down and the distance to the chest wall increases. First dosimetric studies on individual patients showed a significant reduction in heart and lung dose (figs. 1 and 2). It has to be clarified whether the unique dosimetric advantage is clinically relevant or not, so that the use of this method is currently not mandatory. Irradiation in prone position is another promising treat-
ment option. Several publications are in favor of replacing the supra-
inium standard treatment by the prone position for whole-breast ir-
radiation, especially in patients with large breasts [31–33]. Re-
cently, Mulliez et al. [31] reported a phase III randomized trial in this
context, in which skin desquamation, dermatitis and edema were
significantly reduced. Moreover, also the dose to the ipsi-
lareral lung and the left anterior descending coronary artery were sig-
nificantly reduced. Comparing the prone and supine treatment
positions in 400 patients, Formeneri et al. [33] evaluated the in-
field volumes of the heart receiving the full dose as a surrogate for
dose–normal-tissue exposure. They described a considerable anatomic
variability of the volume range, but were also able to show a signif-
ically lower mean dose to the heart in the prone position. Another
way to reduce heart toxicity in radiotherapy of breast cancer is the
use of the evolving techniques in accelerated partial breast irradiation
(APBI), which exclusively targets only the lumpectomy site
plus some margin. The rationale for APBI is based on the fact that
75–85% of the local recurrences after breast cancer surgery oc-
curred at or near the original lumpectomy site [34]. Current tech-
niques in the delivery of APBI are intraoperative radiotherapy
(IORT), multi-interstitial brachytherapy, intracavitary brachyther-
apy, and also external beam radiotherapy. The available data on
APBI suggests acceptable local control and survival in selected pa-
tients with low-risk breast cancer. However, APBI is not applicable
in patients with high-risk features as evidence from modern trials
with long-term follow-up is still missing in this context [35]. There
are also a rising number of patients undergoing oncoplastic sur-
gery, for which the role of APBI is also not yet defined. Further on,
the techniques of APBI are not widely available and only delivered
in specialized radiooncology departments. The German S3 guide-
lines from 2012 [36] state that APBI as sole intra- or postoperative
radiation treatment does not represent the standard of care at that
time. Outside of clinical trials, APBI should only be delivered to
patients for whom whole-breast radiotherapy is not applicable.

Conclusion for Daily Practice

A significant cardiotoxicity in modern adjuvant radiotherapy
for breast cancer has not been observed with the currently used
modern radiotherapy techniques, neither in simple nor in complex
planning target volumes. This relates also to the combination of
irradiation with chemotherapy and immunotherapy. Radiotherapy
is now safer than in the past, but a longer follow-up is needed in
order to verify the exact late effects.

Disclosure Statement

All authors declare no conflict of interests.

References

Overview of randomized trials of postoperative adju-
vant radiotherapy in breast cancer. Cancer Treat Rep

2. Hanson KE, McCabe P, Taylor C, Darby SC: Radiation-
related mortality from heart disease and lung cancer
more than 20 years after radiotherapy for breast can-

3. Clarke M, Collins R, Darby S, Davies C, Elphinstone P,
Evans E, Godwin J, Gray R, Hicks C, James S, Mackin-
non E, McCabe P, McHugh T, Peto R, Taylor C, Wang
Y. Early Breast Cancer Trialsists’ Collaborative Group
(ERRCTCG): Effects of radiotherapy and of differences
in the extent of surgery for early breast cancer on local
recurrence and 15-year survival: an overview of the ran-

4. Early Breast Cancer Trialsists’ Collaborative Group
(ERRCTCG), Darby S, McGale P, Correa C, Taylor C,
Arriagada R, Clarke M, Cutter D, Davies C, Ewertz M,
Godwin J, Gray R, Pierce L, Whelan T, Wang Y, Peto R:
Effect of radiotherapy after breast-conserving sur-
gery on 10-year recurrence and 15-year breast cancer
death: meta-analysis of individual patient data for
10,801 women in 17 randomised trials. Lancet 2011,

5. Sautter-Bihl ML, Sedlmayer F, Budach W, Dunst J,
S, Sautter-Bihl ML, Sedlmayer F, Budach W, Dunst J,
MD, Souchon R, Weiz F, Sauer R; Breast Cancer Ex-
pert Panel of the German Society of Radiation Oncol-
y (DEGRO): DEGRO practical guidelines: radiother-
apy of breast cancer III – radiotherapy of the lymphatic

6. Darby SC, Ewertz M, McCabe P, Bennett AM, Blom-
Goldman U, Breunnum D, Correa C, Cutter D, Gagli-
ardi G, Gigante B, Jensen MB, Niubet A, Peto R, Ra-
himi K, Taylor C, Hall P: Risk of ischemic heart disease
in women after radiotherapy for breast cancer. N Engl

7. Applefield MM, Slawson RG, Spicer KM, Singleton RT,
Wexly MN, Wierink PH: Long-term cardiovascular
evaluation of patients with Hodgkin’s disease treated
by thoracic mantle radiation therapy. Cancer Treat

8. Mill BW, Baglan RJ, Kurichety P, Prasad S, Lee YJ,
Moller R: Symptomatic radiation-induced periarditis

9. Friedrich SA, Unverdorben M, Kunkel B, Dunst J:
[The late cardiac sequelae after mantle-field irradia-
tion. The results in Erlangen’s patient caseload].

10. Alemán BM, van den Belt-Dusebout AW, Kokman
WJ, Van’t Veer MB, Bartelink H, van Leeuwen FE:
Long-term cause-specific mortality of patients treated

late mortality from heart disease after treatment of

Lev-
itt S, Lind B, Rutqvist LE: Long-term cardiac mortality
following radiation therapy for Hodgkin’s disease:
analysis with the relative severity model. Radioter

13. Gagliardi G, Lax I, Ottolenghi A, Rutqvist LE: Long-
term cardiac mortality after radiotherapy of breast
cancer – application of the relative severity model. Br J

14. Schlitz-Hector S, Trott KR: Radiation-induced cardio-
vascular diseases: is the epidemiologic evidence com-
patible with the radiobiologic data? Int J Radiat Oncol

15. Sardaro A, Petruzelli MF, D’Errico MP, Grimaldi L,
Pili G, Portaliuri M: Radiation-induced cardiac damage
in early left breast cancer patients: risk factors, biologi-
ical mechanisms, radiobiology, and dosimetric con-

16. Schlitz-Hector S, Bohm M, Blisch A, Dominik P,
Erdmann E, Müller-Schauenburg W, Weber A: Radia-
tion-induced heart disease: morphologic, changes in
catecholamine synthesis and content, beta-adrenocep-
tor density, and hemodynamic function in an experi-

17. Lind PA, Paganonnell R, Marks LB, Borges-Neto S, Hu
C, Zhou SM, Light K, Hardenbergh PH. Myocardial
perfusion changes in patients irradiated for left-sided
breast cancer and correlation with coronary artery dis-

18. Lorenzen EL, Taylor CW, Maraldo M, Nielsen MH,
Offersen BV, Andersen MR, D’Owrey D, Larsen L,
Dusxbury S, Jhitta B, Darby SC, Ewertz M, Brink C. In-
ter-observer variation in delineation of the heart and
left anterior descending coronary artery in radiother-
apy for breast cancer: a multi-centre study from Den-

