Augmented Renal Vancomycin Clearance in Cancer Patients: A Case Report and Review of the Literature

Harald-Morten Curth Agnes Pelc Fabian Kütting Hans-Michael Steffen

Department of Gastroenterology and Hepatology, University Hospital of Cologne, Germany

Established Facts
- Bacterial infections are frequent in cancer patients and sufficient antibiotic treatment is fundamental in this immunocompromised patient collective.

Novel Insights
- Cancer-related increase of renal clearance should be taken into consideration if antibiotic treatment appears to be inefficient.

Keywords
- Palliative care · Inflammation · Pharmacokinetics · Dose-response relationship, drug

Summary

Background
Bacterial infections are a major cause of morbidity and mortality in cancer patients. Particularly diagnostic and therapeutic procedures (e.g., central venous catheters, paracentesis) increase the risk of infections in this immunocompromised patient population. In the past, antibiotic therapy was empirically initiated in these patients, guided by treatment regimens designed for patients without malignancy; however, the hyperdynamic circulation in systemic inflammatory response syndrome, as well as the presence of malignancy itself, may have a crucial impact on treatment success. **Case Report:** Here, we report the case of a 55-year-old patient with advanced pancreatic cancer and *Staphylococcus epidermidis* bacteremia who, due to increased renal vancomycin clearance, required treatment with high doses of vancomycin in order to reach therapeutic trough levels. **Conclusion:** Oncological status can be a cofactor of altered pharmacokinetics in terms of a paraneoplastic syndrome. With the help of this case report we want to call attention to this clinically significant phenomenon with its inherent risk of inefficient antibiotic treatment.

Background

Bacterial infections are a major cause of life-threatening complications in patients with cancer, either as a consequence of immunocompromising chemotherapy or following diagnostic and therapeutic procedures. In particular, due to the broad application of indwelling catheters and stents, the proportion of infections with Gram-positive micro-organisms has risen over the past decades [1]. When vancomycin (VCM) is administered to oncological patients, in most cases standard dosage regimens are used, although there is evidence suggesting that systemic inflammatory response syndrome (SIRS) or the malignant state may be covariates of phar-
VCM is a glycopeptide antibiotic that is widely used in the setting of Gram-positive infections. To ensure successful treatment, maintaining adequate plasma levels has to be weighed against the risk of nephrotoxicity; hence, renal function determines the efficacy and safety of VCM treatment. In our case, 2 hypotheses had to be considered in relation to changes in VCM PKs. Recently, Shimamoto et al. demonstrated that a score of SIRS severity was correlated to high creatinine clearance associated with increased VCM-dose requirements (p = 0.01), referred to as augmented renal clearance (ARC) [2]. On the other hand, Baptista et al. observed that ARC was found predominantly in less severely ill patients (mean APACHE II score 14.1 and 19.1 in patients with and without ARC, respectively). Whereas Shimamoto et al. included only patients with preexisting infection, Baptista et al. found ARC to be more likely in patients with trauma but not sepsis as primary indication for admission [3].

Thus, ARC seems to be a phenomenon during the early phase of SIRS/sepsis and vanishes in critically ill patients. Both studies suggest a hyperdynamic circulation characterized by increased renal blood flow with an increase in GFR as an underlying mechanism. No information was given concerning the number of oncological patients in these 2 studies. In our patient, CRP decreased after initiation of high-dose VCM therapy, and the concomitant GFR reduction was most likely caused by VCM nephrotoxicity rather than by inflammation control, since GFR recovered (fig. 1). During treatment, there were no signs of hyperdynamic circulation, and the patient had a stable heart rate (95% CI, 76.3–85.4/min) and spontaneous blood pressure (95% CI, 114.2–123.7 mmHg), representing a further argument against SIRS-induced ARC.

In the second hypothesis, malignancy itself may have an impact on VCM PKs beyond the altered distribution volume due to edema, peritoneal, or pleural effusion (not present in our patient). In 1995, Chang et al. reported an increase in VCM clearance in pediatric cancer patients using a 2-compartment Bayesian PK method, and this was later confirmed in adult patients with hematological malignancies. According to the authors, oncological patients would need an approximately 50% higher dosage than usual, e.g. 45 mg/kg/day at intervals of 6, 8, or 12 h [4, 5]. In view of the limited and equivocal data for VCM PK studies in this group of patients, caution should be used in adopting these recommendations, especially for the initial dosage. For instance, Omote et al. did not detect a clear difference in the estimated VCM clearance between cancer and non-cancer patients, suggesting dosage adjustment by routine TDM only [6]. Nevertheless, in vivo experiments in tumor-bearing mice argue for such a relationship. In their experiments Shimada et al.

Fig. 1. Course of laboratory parameters.
VCM = vancomycin, GFR = glomerular filtration rate, CRP = c-reactive protein, *treatment with VCM 30 mg/kg bodyweight (BW); **treatment with VCM 45 mg/kg BW; jejunal stent placement marked with arrow.

Discussion

VCM is a glycopeptide antibiotic that is widely used in the setting of Gram-positive infections. To ensure successful treatment, maintaining adequate plasma levels has to be weighed against the risk of nephrotoxicity; hence, renal function determines the efficacy and safety of VCM treatment. In our case, 2 hypotheses had to be considered in relation to changes in VCM PKs. Recently, Shimamoto et al. demonstrated that a score of SIRS severity was correlated to high creatinine clearance associated with increased VCM-dose requirements (p = 0.01), referred to as augmented renal clearance (ARC) [2]. On the other hand, Baptista et al. observed that ARC was found predominantly in less severely ill patients (mean APACHE II score 14.1 and 19.1 in patients with and without ARC, respectively). Whereas Shimamoto et al. included only patients with preexisting infection, Baptista et al. found ARC to be more likely in patients with trauma but not sepsis as primary indication for admission [3].

Thus, ARC seems to be a phenomenon during the early phase of SIRS/sepsis and vanishes in critically ill patients. Both studies suggest a hyperdynamic circulation characterized by increased renal blood flow with an increase in GFR as an underlying mechanism. No information was given concerning the number of oncological patients in these 2 studies. In our patient, CRP decreased after initiation of high-dose VCM therapy, and the concomitant GFR reduction was most likely caused by VCM nephrotoxicity rather than by inflammation control, since GFR recovered (fig. 1). During treatment, there were no signs of hyperdynamic circulation, and the patient had a stable heart rate (95% CI, 76.3–85.4/min) and spontaneous blood pressure (95% CI, 114.2–123.7 mmHg), representing a further argument against SIRS-induced ARC.

In the second hypothesis, malignancy itself may have an impact on VCM PKs beyond the altered distribution volume due to edema, peritoneal, or pleural effusion (not present in our patient). In 1995, Chang et al. reported an increase in VCM clearance in pediatric cancer patients using a 2-compartment Bayesian PK method, and this was later confirmed in adult patients with hematological malignancies. According to the authors, oncological patients would need an approximately 50% higher dosage than usual, e.g. 45 mg/kg/day at intervals of 6, 8, or 12 h [4, 5]. In view of the limited and equivocal data for VCM PK studies in this group of patients, caution should be used in adopting these recommendations, especially for the initial dosage. For instance, Omote et al. did not detect a clear difference in the estimated VCM clearance between cancer and non-cancer patients, suggesting dosage adjustment by routine TDM only [6]. Nevertheless, in vivo experiments in tumor-bearing mice argue for such a relationship. In their experiments Shimada et al.
proposed direct activating effects on renal organic anion/cation transporters (OCT1/2, OATs) by cytokines such as TNF-α, which are indeed increased in the context of cancer [7, 8]. Although the GFR was extremely elevated in our case, it does not seem to be an essential prerequisite for the increase in VCM clearance since 2 series reporting on 155 patients were unable to find a correlation consistent with an active renal VCM transport [6, 9].

Conclusion

Due to the low number of reported cases, it is not possible to draw firm conclusions concerning the cancer type that is preferentially connected to this phenomenon. In summary, there is no sufficient evidence for routinely starting therapy with increased initial VCM dosages in cancer patients. However, cancer-induced changes in VCM PKs should be taken into account in addition to the large inter-individual variability in VCM clearance, warranting TDM and dosage adaption when therapeutic trough levels cannot be achieved.

Disclosure Statement

The authors declare no conflict of interest. This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

References

Imprint

ISSN Print Edition: 2296–5270
ISSN Online Edition: 2296–5262
Journal Homepage: http://www.karger.com/ort
Publication Data: Volume 38, 2015 of ‘Oncology Research and Treatment’ appears with 12 issues.
Copyright: © 2015 by S. Karger Verlag für Medizin und Naturwissenschaften GmbH, Freiburg (Germany). All rights reserved. No part of the journal may be reproduced in any form without the written permission of the publisher. This includes digitalisation and any further electronic, computing, like saving, copying, printing or electronic transmission of digitalized material from this journal (online or offline). Authorization to photocopy items for internal or personal use of specific clients is granted by Karger.

Photocopying: This journal has been registered with the Copyright Clearance Center (CCC), as indicated by the code appearing on the first page of each article. For readers in the US, this code signals consent for copying of articles for personal or internal use, or for the personal or internal use of specific clients, provided that the stated fee is paid per copy directly to Copyright Clearance Center Inc., 22 Rosewood Drive, Danvers, MA 01923 (USA). A copy of the first page of the article must accompany payment. Consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. In these cases, specific written permission must be obtained from the copyright owner, S. Karger GmbH, Wilhelminstraße 20A, 79098 Freiburg (Germany).

Disclaimer: The statements and data contained in this publication are solely those of the individual authors and contributors and not of the publisher and the editor(s). The appearance of advertisements in the journal is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

Distribution and Subscription: Karger offers three types of subscription: Print Only, Online Only and the combined Print + Online. The basic annual subscription rate is the same for all three delivery forms; however, a fee for the combined print and online subscription is levied, and there is a postage and handling charge for Print Only and Print + Online. Subscriptions run for a full calendar year. Prices are given per volume.