Towards a Paradigm Shift in Cholesterol Treatment

A Re-Examination of the Cholesterol Issue in Japan

Authors

Tomohito Hamazaki, Toyama
Harumi Okuyama, Nagoya
Yoichi Ogushi, Kanagawa
Rokuro Hama, Osaka

67 figures and 24 tables, 2015
Tomohito Hamazaki
University of Toyama
Toyama Jonan Onsen Daini Hospital
Toyama City, Toyama 9398271 (Japan)
E-Mail hamazaki@inm.u-toyama.ac.jp

Yoichi Ogushi
University of Tokai
Ogushi Institute for Medical Information
Hiratsuka City, Kanagawa 2540807 (Japan)
E-Mail oogushi.youichi@gmail.com

Harumi Okuyama
Nagoya City University
Kinjo Gakuin University
Midoriku, Nagoya 4580812 (Japan)
E-Mail okuyamah@kinjo-u.ac.jp

Rokuro Hama
Osaka University School of Medicine
NPO Japan Institute of Pharmacovigilance
Osaka City, Osaka 5430002 (Japan)
E-Mail gec00724@nifty.com

Disclosure Statement

Tomohito Hamazaki is a member of the Science Board of Aker Bio Marine Antarctic and has received travel expenses. Harumi Okuyama, Yoichi Ogushi and Rokuro Hama have nothing to declare.

The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publisher and the editor(s).
Towards a Paradigm Shift in Cholesterol Treatment

A Re-Examination of the Cholesterol Issue in Japan

Contents

Preface V
Introduction 1

Chapter 1 Cholesterol and Mortality
(1) Cholesterol and All-Cause Mortality in Japan 3
(2) Elderly People with High Cholesterol Levels Live Longer Irrespective of Where They Live 8

Chapter 2 Cholesterol and Disease
(1) Cholesterol and Mortality from Cardiovascular Disease 14
(2) Cholesterol and Cancer 25
(3) Cholesterol and Infectious Disease 26
(4) Cholesterol and Liver Disease 30

Chapter 3 Familial Hypercholesterolemia: The Key to Solving the Cholesterol Myth
(1) Is the Hypothesis Correct That the Lower the Cholesterol Levels, the Better? 35
(2) Has Low Density Lipoprotein Apheresis Proven Effective in Japan? 37
(3) The Proportion of Subjects with Familial Hypercholesterolemia in Cohorts Is the Key Issue 37
(4) Effects of Age on the Relationship between Coronary Heart Disease Mortality and Cholesterol Levels 39
(5) Will Familial Hypercholesterolemia Help Survival in Future Pandemics? 41

Chapter 4 Japan Atherosclerosis Society (JAS) Guidelines
(1) Previous Japan Atherosclerosis Society Guidelines 42
(2) Moving from Total Cholesterol to Low Density Lipoprotein Cholesterol 47
(3) Conflicts of Interest 49

Part I: The Most Important Figure and Table
(1) The NIPPON DATA80 Study Alone Reports All-Cause Mortality Is Highest in the Highest Cholesterol Group in Japan 52
(2) The Major Figure and Table in the 2012 JAS Guidelines Are Largely Derived from NIPPON DATA80 Findings
(3) Relationship between Cardiovascular Mortality and Cholesterol in the NIPPON DATA80 Study
(4) The 2012 JAS Guidelines Make No Mention of the Protective Effects of Cholesterol on Stroke

Part II: Other Risk Factors Besides Cholesterol for Coronary Heart Disease
(1) The Risk of Smoking Can Be Reduced by Stopping Smoking Only, Not by Lowering Cholesterol Levels
(2) The 2012 JAS Guidelines Give Target Levels for Low Density Lipoprotein Cholesterol Even for Women
(3) The 2012 JAS Guidelines Give More Stringent Target Levels for Low Density Lipoprotein Cholesterol with Age

Part III: Cholesterol-Lowering Drugs and Diets
(1) Serious Flaws in the MEGA Study on Statins
(2) The 2012 JAS Guidelines Cite the J-LIT Study, an Intervention Study, as a Cohort Study
(3) Flaws in Other Japanese Intervention Studies
(4) Should Saturated Fatty Acid Levels Be Reduced?

Part IV: The Adverse Effects of Statins
(1) The 2012 JAS Guidelines Have Limited Descriptions of the Adverse Effects of Lipid-Lowering Drugs
(2) The Carcinogenic Nature of Statins
(3) Statins and Nervous System Disorders
(4) Teratogenicity Associated with Statins
(5) Other Organ Dysfunction Caused by Statins

Chapter 9 Are Statins Effective for Preventing Coronary Heart Disease in Type 2 Diabetes Mellitus in Japan, as the 2012 JAS Guidelines Recommend?
(1) Background to the Relationship between Diabetes and Hypercholesterolemia
(2) First and Foremost, Statins Increase Incident Diabetes
(3) How Statins Deteriorate Glucose Metabolism
(4) Do the Benefits of Statins Outweigh the Risk for Incident Diabetes?
(5) Answering the Main Question Posed in This Chapter

Chapter 10 Hypertriglyceridemia and Low Levels of High Density Lipoprotein Cholesterol: Are They Treatment Targets?
(1) Hypertriglyceridemia: Should It Be Treated to Prevent Coronary Heart Disease?
(2) Hypertriglyceridemia: Should It Be Treated to Prevent Stroke?
(3) What Do Low Levels of High Density Lipoprotein Cholesterol Mean?

Chapter 11 Japan Atherosclerosis Society Treatment Guide for Dyslipidemia (2013)
(1) Newly Presented Conflicts of Interests Statements
(2) Side Effects of Lipid-Lowering Drugs, Such as Statins

Conclusion
Challenging Plasma Cholesterol as a Risk Factor for Cardiovascular Disease

For many years a broad consensus has been established among researchers, health care professionals, medical-scientific societies and governmental bodies who agree that markedly elevated plasma concentrations of cholesterol and low-density lipoprotein (LDL) cholesterol are one among several other causal risk factors for increased occurrence of cardiovascular disorders [1–6]. Different pieces of evidence support a causal role of altered cholesterol metabolism in atherosclerosis development, including epidemiological observations and controlled trials, based primarily on dietary and drug interventions. More recently, studies relating genetic variation with cholesterol metabolism and health outcomes have added weight to the conclusion that elevated LDL cholesterol in plasma is a risk factor for the occurrence or cardiovascular disorders. Certain mutations of the gene encoding for proprotein convertase subtilisin/kexin type 9 (PCSK9), an enzyme that is involved in cholesterol homeostasis induce both a reduced plasma LDL cholesterol and a lowered risk of coronary heart disease [7, 8]. In a large meta-analysis involving data from more than 300 000 people, a variety of genetic polymorphisms that induce lower plasma LDL cholesterol also reduce the risk of coronary heart disease, with a rather consistent reduction of the odds ratio by about 20% for each 0.25 mmol/l or 9.7 mg/dl lowered LDL cholesterol concentration [9]. These and other studies are based on the concept of 'Mendelian randomisation', an epidemiological method that assess the effects of genes considered randomly distributed in the population to obtain unbiased estimates of causation [10]. Moreover, effects of intervention studies provide rather convincing evidence. Several controlled intervention trials have achieved a proportional reduction of the rate of cardiovascular events along with the degree of lowering elevated LDL cholesterol that was reached [11–13]. In subjects with a markedly increased LDL cholesterol level due to a defective LDL cholesterol receptor function (familial hypercholesterolaemia), cholesterol reduction with statins markedly improves the likelihood of event free survival [14]. Based on these and other pieces of evidence, health care professionals around the world treat individuals with primary genetic disorders that induce markedly increased LDL cholesterol plasma concentrations with the goal to reduce blood lipid levels as well as morbidity and mortality. For the general population dietary and lifestyle advice is provided that aims at reducing dyslipidemia and associated risks [5, 6]. However, it is not always adequately appreciated that cholesterol metabolism is only one piece of a complex and multifaceted puzzle of numerous determinants of risk, which also includes the level physical activity, obesity, adiposity, insulin resistance, smoking, different dietary variables e.g. the intake of omega-6 and omega-3 polyunsaturated fatty acids, and many others.

In this supplement, Tomohito Hamazaki and coworkers challenge the largely prevailing view and propose an 'anti-cholesterol hypothesis', which appears to be developed primarily from epidemiological observations in the Japanese population, with a number of further added arguments. This thoughtful proposal provides very stimulating reading material. The Editorial Board of the Annals of Nutrition and Metabolism favours the publication of controversial arguments and positions and supports open and unrestricted debates, which may provide the very basis of focussing arguments and of refining our scientific understanding. We wish to emphasize that content published in supplements of our journal is not peer reviewed under the supervision of the Editorial Board, but responsibility lies entirely with the guest editor of the respective supplement.

Berthold Koletzko
Editor in Chief, Annals of Nutrition and Metabolism
for the Editorial Board
References


6 European-Food-Safety-Authority: Scientific Opinion on Dietary Reference Values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA Journal 2010;8:1461.


