Login to MyKarger

New to MyKarger? Click here to sign up.



Login with Facebook

Forgot your password?

Authors, Editors, Reviewers

For Manuscript Submission, Check or Review Login please go to Submission Websites List.

Submission Websites List

Institutional Login
(Shibboleth or Open Athens)

For the academic login, please select your country in the dropdown list. You will be redirected to verify your credentials.

Biomaterials for Oral and Craniomaxillofacial Applications

Editor(s): Deb S. (London) 
Cover
Deb S (ed): Biomaterials for Oral and Craniomaxillofacial Applications. Front Oral Biol. Basel, Karger, 2015, vol 17, pp 22-32
(DOI:10.1159/000381690)

Biological Impact of Bioactive Glasses and Their Dissolution Products

Hoppe A. · Boccaccini A.R.

Author affiliations

Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany

Corresponding Author

Prof. Dr. Aldo R. Boccaccini

Institute of Biomaterials, Department of Materials Science and Engineering

University of Erlangen-Nuremberg

Cauerstrasse 6, DE-91058 Erlangen (Germany)

E-Mail aldo.boccaccini@ww.uni-erlangen.de

Do you have an account?

Login Information





Contact Information










I have read the Karger Terms and Conditions and agree.



Abstract

For many years, bioactive glasses (BGs) have been widely considered for bone tissue engineering applications due to their ability to bond to hard as well as soft tissue (a property termed bioactivity) and for their stimulating effects on bone formation. Ionic dissolution products released during the degradation of the BG matrix induce osteogenic gene expression leading to enhanced bone regeneration. Recently, adding bioactive metallic ions (e.g. boron, copper, cobalt, silver, zinc and strontium) to silicate (or phosphate and borate) glasses has emerged as a promising route for developing novel BG formulations with specific therapeutic functionalities, including antibacterial, angiogenic and osteogenic properties. The degradation behaviour of BGs can be tailored by adjusting the glass chemistry making these glass matrices potential carrier systems for controlled therapeutic ion release. This book chapter summarises the fundamental aspects of the effect of ionic dissolution products from BGs on osteogenesis and angiogenesis, whilst discussing novel BG compositions with controlled therapeutic ion release.

© 2015 S. Karger AG, Basel


References

  1. Hench LL: Bioceramics. J Am Ceram Soc 1998;81:1705-1728.
  2. Kokubo T: Apatite formation on surfaces of ceramics, metals and polymers in body environment. Acta Mater 1998;46:2519-2527.
    External Resources
  3. Hench LL: Bioceramics: from concept to clinic. J Am Ceram Soc 1991;74:1487-1510.
    External Resources
  4. Day RM: Bioactive glass stimulates the secretion of angiogenic growth factors and angiogenesis in vitro. Tissue Eng 2005;11:768-777.
  5. Gorustovich A, Roether J, Boccaccini AR: Effect of bioactive glasses on angiogenesis: in vitro and in vivo evidences. Tissue Eng Part B Rev 2010;16:199-207.
  6. Leu A, Leach J: Proangiogenic potential of a collagen/bioactive glass substrate. Pharm Res 2008;25:1222-1229.
  7. Hu S, Chang J, Liu M, Ning C: Study on antibacterial effect of 45S5 Bioglass®. J Mater Sci Mater Med 2009;20:281-286.
  8. Jones J, Ehrenfried L, Saravanapavan P, Hench L: Controlling ion release from bioactive glass foam scaffolds with antibacterial properties. J Mater Sci Mater Med 2006;17:989-996.
  9. Leppäranta O, Vaahtio M, Peltola T, Zhang D, Hupa L, Hupa M, Ylänen H, et al: Antibacterial effect of bioactive glasses on clinically important anaerobic bacteria in vitro. J Mater Sci Mater Med 2008;19:547-551.
  10. Munukka E, Lepparanta O, Korkeamaki M, Vaahtio M, Peltola T, Zhang D, Hupa L, et al: Bactericidal effects of bioactive glasses on clinically important aerobic bacteria. J Mater Sci Mater Med 2008;19:27-32.
  11. Yli-Urpo H, Närhi T, Söderling E: Antimicrobial effects of glass ionomer cements containing bioactive glass (S53P4) on oral micro-organisms in vitro. Acta Odontol Scand 2003;61:241-246.
  12. Zhang D, Lepparanta O, Munukka E, Ylanen H, Viljanen MK, Eerola E, Hupa M, et al: Antibacterial effects and dissolution behavior of six bioactive glasses. J Biomed Mater Res A 2010;93:475-483.
  13. Gorriti MF, López JMP, Boccaccini AR, Audisio C, Gorustovich AA: In vitro study of the antibacterial activity of bioactive glass-ceramic scaffolds. Adv Eng Mater 2009;11:B67-B70.
    External Resources
  14. Day RM, Boccaccini AR: Effect of particulate bioactive glasses on human macrophages and monocytes in vitro. J Biomed Mater Res A 2005;73A:73-79.
  15. Hench LL: Genetic design of bioactive glass. J Eur Ceram Soc 2009;29:1257-1265.
    External Resources
  16. Hoppe A, Güldal NS, Boccaccini AR: A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 2011;32:2757-2774.
  17. Hoppe A, Mourino V, Boccaccini AR: Therapeutic inorganic ions in bioactive glasses to enhance bone formation and beyond. Biomater Sci 2013;1:254-256.
    External Resources
  18. Mouriño V, Cattalini JP, Boccaccini AR: Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments. J R Soc Interface 2012;9:401-419.
  19. Saltman PD, Strause LG: The role of trace minerals in osteoporosis. J Am Coll Nutr 1993;12:384-389.
  20. Beattie JH, Avenell A: Trace element nutrition and bone metabolism. Nutr Res Rev 1992;5:167-188.
  21. Nielsen F: New essential trace elements for the life sciences. Biol Trace Elem Res 1990;26-27:599-611.
  22. Ash C, Stone R: A question of dose. Science 2003;300:925.
    External Resources
  23. Habibovic P, Barralet JE: Bioinorganics and biomaterials: bone repair. Acta Biomater 2011;7:3013-3026.
  24. Hinoi E, Takarada T, Yoneda Y: Glutamate signaling system in bone. J Pharmacol Sci 2004;94:215-220.
  25. Maeno S, Niki Y, Matsumoto H, Morioka H, Yatabe T, Funayama A, Toyama Y, et al: The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials 2005;26:4847-4855.
  26. Marie PJ: The calcium-sensing receptor in bone cells: a potential therapeutic target in osteoporosis. Bone 2010;46:571-576.
  27. Valerio P, Pereira MM, Goes AM, Leite MF: Effects of extracellular calcium concentration on the glutamate release by bioactive glass (BG60S) preincubated osteoblasts. Biomed Mater 2009;4:045011.
  28. Julien M, Khoshniat S, Lacreusette A, Gatius M, Bozec A, Wagner EF, Wittrant Y, et al: Phosphate-dependent regulation of MGP in osteoblasts: role of ERK1/2 and Fra-1. J Bone Miner Res 2009;24:1856-1868.
  29. Carlisle E: Silicon: a requirement in bone formation independent of vitamin D1. Calcif Tissue Int 1981;33:27-34.
  30. Carlisle EM: Silicon: a possible factor in bone calcification. Science 1970;167:279-280.
  31. Reffitt DM, Ogston N, Jugdaohsingh R, Cheung HFJ, Evans BAJ, Thompson RPH, Powell JJ, et al: Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone 2003;32:127-135.
  32. Delannoy P, Bazot D, Marie PJ: Long-term treatment with strontium ranelate increases vertebral bone mass without deleterious effect in mice. Metabolism 2002;51:906-911.
  33. Grynpas MD, Marie PJ: Effects of low doses of strontium on bone quality and quantity in rats. Bone 1990;11:313-319.
  34. Marie PJ, Ammann P, Boivin G, Rey C: Mechanisms of action and therapeutic potential of strontium in bone. Calcif Tissue Int 2001;69:121-129.
  35. Shahnazari M, Sharkey NA, Fosmire GJ, Leach RM: Effects of strontium on bone strength, density, volume, and microarchitecture in laying hens. J Bone Miner Res 2006;21:1696-1703.
  36. Verberckmoes SC, De Broe ME, D'Haese PC: Dose-dependent effects of strontium on osteoblast function and mineralization. Kidney Int 2003;64:534-543.
  37. Marie PJ: Strontium ranelate: a physiological approach for optimizing bone formation and resorption. Bone 2006;38(2 suppl 1):10-14.
  38. Brandão-Neto J, Stefan V, Mendonça BB, Bloise W, Castro AVB: The essential role of zinc in growth. Nutr Res 1995;15:335-358.
    External Resources
  39. Yamaguchi M: Role of zinc in bone formation and bone resorption. J Trace Elem Exp Med 1998;11:119-135.
    External Resources
  40. Choi MK, Kim MH, Kang MH: The effect of boron supplementation on bone strength in ovariectomized rats fed with diets containing different calcium levels. Food Sci Biotechnol 2005;14:242-248.
  41. Uysal T, Ustdal A, Sonmez MF, Ozturk F: Stimulation of bone formation by dietary boron in an orthopedically expanded suture in rabbits. Angle Orthod 2009;79:984-990.
  42. Buttyan R, Chichester P, Stisser B, Matsumoto S, Ghafar MA, Levin RM: Acute intravesical infusion of a cobalt solution stimulates a hypoxia response, growth and angiogenesis in the rat bladder. J Urol 2003;169:2402-2406.
  43. Patntirapong S, Habibovic P, Hauschka PV: Effects of soluble cobalt and cobalt incorporated into calcium phosphate layers on osteoclast differentiation and activation. Biomaterials 2009;30:548-555.
  44. Peters K, Schmidt H, Unger RE, Otto M, et al: Software-supported image quantification of angiogenesis in an in vitro culture system: application to studies of biocompatibility. Biomaterials 2002;23:3413-3419.
  45. Tanaka T, Kojima I, Ohse T, Ingelfinger JR, Adler S, Fujita T, Nangaku M: Cobalt promotes angiogenesis via hypoxia-inducible factor and protects tubulointerstitium in the remnant kidney model. Lab Invest 2005;85:1292-1307.
  46. Harris ED: A requirement for copper in angiogenesis. Nutr Rev 2004;62:60-64.
  47. Lai YL, Yamaguchi M: Effects of copper on bone component in the femoral tissues of rats: anabolic effect of zinc is weakened by copper. Biol Pharm Bull 2005;28:2296-2301.
  48. Uauy R, Olivares M, Gonzalez M: Essentiality of copper in humans. Am J Clin Nutr 1998;67:952S-959S.
    External Resources
  49. Hartwig A: Role of magnesium in genomic stability. Mutat Res 2001;475:113-121.
  50. Rude RK, Gruber HE, Wei LY, Frausto A, Mills BG: Magnesium deficiency: effect on bone and mineral metabolism in the mouse. Calcif Tissue Int 2003;72:32-41.
  51. Staiger MP, Pietak AM, Huadmai J, Dias G: Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 2006;27:1728-1734.
  52. Tsuboi S, Nakagaki H, Ishiguro K, Kondo K, Mukai M, Robinson C, Weatherell JA: Magnesium distribution in human bone. Calcif Tissue Int 1994;54:34-37.
  53. Zreiqat H, Howlett CR, Zannettino A, Evans P, Schulze-Tanzil G, Knabe C, Shakibaei M: Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J Biomed Mater Res 2002;62:175-184.
  54. Thompson KH, Orvig C: Boon and bane of metal ions in medicine. Science 2003;300:936-939.
  55. Mourino V, Boccaccini AR: Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. J R Soc Interface 2010;7:209-227.
  56. Damen JJM, Ten Cate JM: Silica-induced precipitation of calcium phosphate in the presence of inhibitors of hydroxyapatite formation. J Dent Res 1992;71:453-457.
  57. Xie H, Kang YJ: Role of copper in angiogenesis and its medicinal implications. Curr Med Chem 2009;16:1304-1314.
  58. Gerard C, Bordeleau LJ, Barralet J, Doillon CJ: The stimulation of angiogenesis and collagen deposition by copper. Biomaterials 2010;31:824-831.
  59. Hu GF: Copper stimulates proliferation of human endothelial cells under culture. J Cell Biochem 1998;69:326-335.
  60. McAuslan BR, Reilly WG, Hannan GN, Gole GA: Angiogenic factors and their assay: activity of formyl methionyl leucyl phenylalanine, adenosine diphosphate, heparin, copper, and bovine endothelium stimulating factor. Microvasc Res 1983;26:323-338.
  61. Rodríguez JP, Ríos S, González M: Modulation of the proliferation and differentiation of human mesenchymal stem cells by copper. J Cell Biochem 2002;85:92-100.
  62. Fan W, Crawford R, Xiao Y: Enhancing in vivo vascularized bone formation by cobalt chloride-treated bone marrow stromal cells in a tissue engineered periosteum model. Biomaterials 2010;31:3580-3589.
  63. Dzondo-Gadet M, Mayap-Nzietchueng R, Hess K, Nabet P, Belleville F, Dousset B: Action of boron at the molecular level: effects on transcription and translation in an acellular system. Biol Trace Elem Res 2002;85:23-33.
  64. Nielsen FH: Is boron nutritionally relevant? Nutr Rev 2008;66:183-191.
  65. Kwun I-S, Cho Y-E, Lomeda R-AR, Shin H-I, Choi J-Y, Kang Y-H, Beattie JH: Zinc deficiency suppresses matrix mineralization and retards osteogenesis transiently with catch-up possibly through Runx 2 modulation. Bone 2010;46:732-741.
  66. Yamasaki Y, Yoshida Y, Okazaki M, Shimazu A, Uchida T, Kubo T, Akagawa Y, et al: Synthesis of functionally graded MgCO3 apatite accelerating osteoblast adhesion. J Biomed Mater Res 2002;62:99-105.
  67. Meunier PJ, Slosman DO, Delmas PD, Sebert JL, Brandi ML, Albanese C, Lorenc R, et al: Strontium ranelate: dose-dependent effects in established postmenopausal vertebral osteoporosis - a 2-year randomized placebo controlled trial. J Clin Endocrinol Metab 2002;87:2060-2066.
  68. Makoukji J, Belle M, Meffre D, Stassart R, Grenier J, Shackleford GG, Fledrich R, et al: Lithium enhances remyelination of peripheral nerves. Proc Natl Acad Sci U S A 2012;109:3973-3978.
  69. Clément-Lacroix P, Ai M, Morvan F, Roman-Roman S, Vayssière B, Belleville C, Estrera K, et al: Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice. Proc Natl Acad Sci U S A 2005;102:17406-17411.
  70. Hench LL, Polak JM: Third-generation biomedical materials. Science 2002;295:1014-1017.
  71. Hench LL, Xynos ID, Polak JM: Bioactive glasses for in situ tissue regeneration. J Biomater Sci Polym Ed 2004;15:543-562.
  72. Xynos ID, Edgar AJ, Buttery LDK, Hench LL, Polak JM: Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass® 45S5 dissolution. J Biomed Mater Res 2001;55:151-157.
  73. Jell G, Notingher I, Tsigkou O, Notingher P, Polak JM, Hench LL, Stevens MM: Bioactive glass-induced osteoblast differentiation: a noninvasive spectroscopic study. J Biomed Mater Res A 2008;86A:31-40.
  74. Fu Q, Rahaman MN, Bal BS, Brown RF: Proliferation and function of MC3T3-E1 cells on freeze-cast hydroxyapatite scaffolds with oriented pore architectures. J Mater Sci Mater Med 2009;20:1159-1165.
  75. Fu Q, Rahaman MN, Bal BS, Brown RF: Preparation and in vitro evaluation of bioactive glass (13-93) scaffolds with oriented microstructures for repair and regeneration of load-bearing bones. J Biomed Mater Res A 2010;93A:1380-1390.
  76. Fu Q, Ramahan MN, Bal BS, Kuroki K, Brown RF: In vivo evaluation of 13-93 bioactive glass scaffolds with trabecular and oriented microstructures in a subcutaneous rat implantation model. J Biomed Mat Res A 2010;95A:235-244.
  77. Brown RF, Day DE, Day TE, Jung S, Rahaman MN, Fu Q: Growth and differentiation of osteoblastic cells on 13-93 bioactive glass fibers and scaffolds. Acta Biomater 2008;4:387-396.
  78. Bosetti M, Cannas M: The effect of bioactive glasses on bone marrow stromal cells differentiation. Biomaterials 2005;26:3873-3879.
  79. Bielby RC, Christodoulou IS, Pryce RS, Radford WJP, Hench LL, Polak JM: Time- and concentration-dependent effects of dissolution products of 58S sol-gel bioactive glass on proliferation and differentiation of murine and human osteoblasts. Tissue Eng 2004;10:1018-1026.
  80. Christodoulou I, Buttery LDK, Tai G, Hench LL, Polak JM: Characterization of human fetal osteoblasts by microarray analysis following stimulation with 58S bioactive gel-glass ionic dissolution products. J Biomed Mater Res B Appl Biomater 2006;77B:431-446.
  81. Jones JR, Tsigkou O, Coates EE, Stevens MM, Polak JM, Hench LL: Extracellular matrix formation and mineralization on a phosphate-free porous bioactive glass scaffold using primary human osteoblast (HOB) cells. Biomaterials 2007;28:1653-1663.
  82. Jell G, Stevens M: Gene activation by bioactive glasses. J Mater Sci Mater Med 2006;17:997-1002.
  83. Leu A, Stieger SM, Dayton P, Ferrara KW, Leach JK: Angiogenic response to bioactive glass promotes bone healing in an irradiated calvarial defect. Tissue Eng Part A 2009;15:877-885.
  84. Deb S, Mandegaran R, Di Silvio L: A porous scaffold for bone tissue engineering/45S5 Bioglass® derived porous scaffolds for co-culturing osteoblasts and endothelial cells. J Mater Sci Mater Med 2010;21:893-905.
  85. Day RM, Boccaccini AR, Shurey S, Roether JA, Forbes A, Hench LL, Gabe SM: Assessment of polyglycolic acid mesh and bioactive glass for soft-tissue engineering scaffolds. Biomaterials 2004;25:5857-5866.
  86. Andrade AL, Andrade SP, Domingues RZ: In vivo performance of a sol-gel glass-coated collagen. J Biomed Mater Res B Appl Biomater 2006;79B:122-128.
  87. Ross EA, Batich CD, Clapp WL, Sallustio JE, Lee NC: Tissue adhesion to bioactive glass-coated silicone tubing in a rat model of peritoneal dialysis catheters and catheter tunnels. Kidney Int 2003;63:702-708.
  88. Mahmood J, Takita H, Ojima Y, Kobayashi M, Kohgo T, Kuboki Y: Geometric effect of matrix upon cell differentiation: BMP-induced osteogenesis using a new bioglass with a feasible structure. J Biochem 2001;129:163-171.
  89. Nandi SK, Kundu B, Datta S, De DK, Basu D: The repair of segmental bone defects with porous bioglass: an experimental study in goat. Res Vet Sci 2009;86:162-173.
  90. Keshaw H, Georgiou G, Blaker JJ, Forbes A, Knowles JC, Day RM: Assessment of polymer/bioactive glass-composite microporous spheres for tissue regeneration applications. Tissue Eng Part A 2009;15:1451-1461.
  91. Choi HY, Lee JE, Park HJ, Oum BS: Effect of synthetic bone glass particulate on the fibrovascularization of porous polyethylene orbital implants. Ophthal Plast Reconstr Surg 2006;22:121-125.
  92. Day RM, Maquet V, Boccaccini AR, Jerome R, Forbes A: In vitro and in vivo analysis of macroporous biodegradable poly(D,L-lactide-co-glycolide) scaffolds containing bioactive glass. J Biomed Mater Res A 2005;75:778-787.
  93. Valerio P, Pereira MM, Goes AM, Leite MF: The effect of ionic products from bioactive glass dissolution on osteoblast proliferation and collagen production. Biomaterials 2004;25:2941-2948.
  94. Li H, Chang J: Stimulation of proangiogenesis by calcium silicate bioactive ceramic. Acta Biomater 2013;9:5379-5389.
  95. Li H, Chang J: Bioactive silicate materials stimulate angiogenesis in fibroblast and endothelial cell co-culture system through paracrine effect. Acta Biomater 2013;9:6981-6991.
  96. Alcaide M, Portolés P, López-Noriega A, Arcos D, Vallet-Regí M, Portolés MT: Interaction of an ordered mesoporous bioactive glass with osteoblasts, fibroblasts and lymphocytes, demonstrating its biocompatibility as a potential bone graft material. Acta Biomater 2010;6:892-899.
  97. Brown EM: Role of the calcium-sensing receptor in extracellular calcium homeostasis. Best Pract Res Clin Endocrinol Metab 2013;27:333-343.
  98. Varanasi VG, Leong KK, Dominia LM, Jue SM, Loomer PM, Marshall GW: Si and Ca individually and combinatorially target enhanced MC3T3-E1 subclone 4 early osteogenic marker expression. J Oral Implantol 2012;38:325-336.
  99. Lopes JH, Mazali IO, Landers R, Bertran CA: Structural investigation of the surface of bioglass 45S5 enriched with calcium ions. J Am Ceram Soc 2013;96:1464-1469.
    External Resources
  100. Mladenović Ž, Johansson A, Willman B, Shahabi K, Björn E, Ransjö M: Soluble silica inhibits osteoclast formation and bone resorption in vitro. Acta Biomater 2014;10:406-418.
  101. Detsch R, Boccaccini AR: The role of osteoclasts in bone tissue engineering. J Tissue Eng Regen Med 2014, E-pub ahead of print.
  102. Lakhkar NJ, Lee IH, Kim HW, Salih V, Wall IB, Knowles JC: Bone formation controlled by biologically relevant inorganic ions: role and controlled delivery from phosphate-based glasses. Adv Drug Deliv Rev 2013;65:405-420.
  103. Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF, Tomsia AP: Bioactive glass in tissue engineering. Acta Biomater 2011;7:2355-2373.
  104. Gentleman E, Fredholm YC, Jell G, Lotfibakhshaiesh N, O'Donnell MD, Hill RG, Stevens MM: The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro. Biomaterials 2010;31:3949-3956.
  105. Gorustovich AA, Steimetz T, Cabrini RL, López JMP: Osteoconductivity of strontium-doped bioactive glass particles: a histomorphometric study in rats. J Biomed Mater Res A 2010;92A:232-237.
  106. O'Donnell MD, Candarlioglu PL, Miller CA, Gentleman E, Stevens MM: Materials characterisation and cytotoxic assessment of strontium-substituted bioactive glasses for bone regeneration. J Mater Chem 2010;20:8934-8941.
    External Resources
  107. Wu C, Zhou Y, Lin C, Chang J, Xiao Y: Strontium-containing mesoporous bioactive glass scaffolds with improved osteogenic/cementogenic differentiation of periodontal ligament cells for periodontal tissue engineering. Acta Biomater 2012;8:3805-3815.
  108. Diba M, Tapia F, Boccaccini AR, Strobel LA: Magnesium-containing bioactive glasses for biomedical applications. Int J Appl Glass Sci 2012;3:221-253.
    External Resources
  109. Varanasi VG, Saiz E, Loomer PM, Ancheta B, Uritani N, Ho SP, Tomsia AP, et al: Enhanced osteocalcin expression by osteoblast-like cells (MC3T3-E1) exposed to bioactive coating glass (SiO2-CaO-P2O5-MgO-K2O-Na2O system) ions. Acta Biomater 2009;5:3536-3547.
  110. Chen X, Liao X, Huang Z, You P, Chen C, Kang Y, Yin G: Synthesis and characterization of novel multiphase bioactive glass-ceramics in the CaO-MgO-SiO2 system. J Biomed Mater Res B Appl Biomater 2010;93B:194-202.
  111. Saboori A, Rabiee M, Moztarzadeh F, Sheikhi M, Tahriri M, Karimi M: Synthesis, characterization and in vitro bioactivity of sol-gel-derived SiO2-CaO-P2O5-MgO bioglass. Mater Sci Eng C Mater Biol Appl 2009;29:335-340.
    External Resources
  112. Knabe C, Stiller M, Berger G, Reif D, Gildenhaar R, Howlett CR, Zreiqat H: The effect of bioactive glass ceramics on the expression of bone-related genes and proteins in vitro. Clin Oral Implants Res 2005;16:119-127.
  113. Miola M, Brovarone CV, Maina G, Rossi F, Bergandi L, Ghigo D, Saracino S, et al: In vitro study of manganese-doped bioactive glasses for bone regeneration. Mater Sci Eng C Mater Biol Appl 2014;38:107-118.
  114. Obata A, Takahashi Y, Miyajima T, Ueda K, Narushima T, Kasuga T: Effects of niobium ions released from calcium phosphate invert glasses containing Nb2O5 on osteoblast-like cell functions. ACS Appl Mater Interfaces 2012;4:5684-5690.
  115. Bae Y-J, Kim M-H: Manganese supplementation improves mineral density of the spine and femur and serum osteocalcin in rats. Biol Trace Elem Res 2008;124:28-34.
  116. Stähli C, Muja N, Nazhat SN: Controlled copper ion release from phosphate-based glasses improves human umbilical vein endothelial cell survival in a reduced nutrient environment. Tissue Eng Part A 2013;19:548-557.
  117. Wu C, Zhou Y, Xu M, Han P, Chen L, Chang J, Xiao Y: Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials 2013;34:422-433.
  118. Aina V, Cerrato G, Martra G, Malavasi G, Lusvardi G, Menabue L: Towards the controlled release of metal nanoparticles from biomaterials: physico-chemical, morphological and bioactivity features of Cu-containing sol-gel glasses. Appl Surf Sci 2013;283:240-248.
    External Resources
  119. Semenza GL: Life with oxygen. Science 2007;318:62-64.
  120. Hoppe A, Jokic B, Janackovic D, Fey T, Greil P, Romeis S, Schmidt J, et al: Cobalt-releasing 1393 bioactive glass-derived scaffolds for bone tissue engineering applications. ACS Appl Mater Interfaces 2014;6:2865-2877.
  121. Azevedo MM, Jell G, O'Donnell MD, Law RV, Hill RG, Stevens MM: Synthesis and characterization of hypoxia-mimicking bioactive glasses for skeletal regeneration. J Mater Chem 2010;20:8854-8864.
    External Resources
  122. Wu C, Zhou Y, Fan W, Han P, Chang J, Yuen J, Zhang M, et al: Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering. Biomaterials 2012;33:2076-2085.
  123. Christie JK, Tilocca A: Short-range structure of yttrium alumino-silicate glass for cancer radiotherapy: Car-Parrinello molecular dynamics simulations. Adv Eng Mater 2010;12:B326-B330.
    External Resources
  124. Christie JK, Malik J, Tilocca A: Bioactive glasses as potential radioisotope vectors for in situ cancer therapy: investigating the structural effects of yttrium. Phys Chem Chem Phys 2011;13:17749-17755.
  125. Zhang XF, Kehoe S, Adhi SK, Ajithkumar TG, Moane S, O'Shea H, Boyd D: Composition-structure-property (Zn2+ and Ca2+ ion release) evaluation of Si-Na-Ca-Zn-Ce glasses: potential components for nerve guidance conduits. Mater Sci Eng C 2011;31:669-676.
    External Resources
  126. Miguez-Pacheco V, Hench LL, Boccaccini AR: Bioactive glasses beyond bone and teeth: emerging applications in contact with soft tissues. Acta Biomater 2015;13:1-15.

Article / Publication Details

First-Page Preview
Abstract of  

Published online: July 20, 2015
Cover Date: 2015

Number of Print Pages: 11
Number of Figures: 1
Number of Tables: 1

ISBN: 978-3-318-02460-9 (Print)
eISBN: 978-3-318-02461-6 (Online)