Enzyme Regulation and Metabolic Diseases

Francesco Belfiore, M.D.

Department of Medicine, University of Catania Medical School, Ospedale Garibaldi, Catania

39 figures and 7 tables, 1980

Contents

Foreword XXI
Preface XXII

Introduction: Mechanisms of Enzyme Regulation I
Inheritance 2
Induction-Repression Mechanisms 2
Allosteric Effects 2
Covalent Modifications 4
Amplification of Regulatory Effects Through Substrate Cycles ('Futile Cycles') 4
Enzyme Heterogeneity 5
Functional Significance of Enzyme Regulation 5
Scheme of the Following Presentation 5

Part I. Obesity

A. Regulatory Enzymes of the Metabolic Pathways Involved in Obesity 8

1. Adipose Tissue 8
Glycolysis 8
Hexokinase 8
Other Glycolytic Enzymes 9
Comment on Glycolysis 13
Glycolysis in Human Adipose Tissue 14
Pentose Cycle 15
Reversal of Glycolysis: Gluconeogenesis and Glyceroneogenesis 17
Enzymes Involved in the Metabolism of Glycerol 3-Phosphate 17
Formation of Glycerol 3-Phosphate 17
Utilization of Glycerol 3-Phosphate 19
Fatty Acid Synthesis 21
Fatty Acid Synthesis from Acetyl-CoA 21
Acetyl-CoA Carboxylase 21
Fatty Acid Synthetase 21
Supply of Extramitochondrial Acetyl-CoA 24
Citrate Cleavage 24
Formation from Acetoacetate of Mitochondrial Origin 27
Formation from Acetyl-Carnitine of Mitochondrial Origin 27
Synthesis from Acetate 27
Cleavage of Citrate Formed in the Cytosol 27
Generation of Reducing Equivalents 28
Generation of NADPH 28
Generation of NADH 30

VI Contents

Comment on Fatty Acid Synthesis 31
Fatty Acid Synthesis in Rat Adipose Tissue 31
Variation with Species: Lipogenesis in Human Adipose Tissue 32
Fatty Acid Uptake by the Action of Lipoprotein Lipase 35
Fatty Acid Elongation 35
Fatty Acid Desaturation 35
Fatty Acid Activation and Oxidation 36
Fatty Acid Activation 36
Fatty Acid Oxidation 36
Triglyceride Synthesis 37
Triglyceride Hydrolysis 41
Triacylglycerol Lipase (Hormone-Sensitive Lipase) 41
The Adenylate Cyclase-Phosphodiesterase and Protein Kinase-Phosphoprotein Phosphatase Systems 43
Esterase 47
Diacylglycerol and Monoacylglycerol Lipases 47
Acyl-Cholesterol Lipase 48
Other Data on Lipolysis 48
The Triglyceride/Fatty Acid Cycle 49
Glycogen Metabolism 50
Cholesterol Metabolism 51

2. Liver Tissue 51
Glucose Metabolism 51
Glycolysis 51
Pentose Cycle 51
Gluconeogenesis 52
Glycogen Metabolism 52
Comment on Glucose Metabolism 52
Metabolism of Glycerol 3-Phosphate 52
Fatty Acid Synthesis 55
Fatty Acid Synthesis from Acetyl-CoA 56
Acetyl-CoA Carboxylase 56
Fatty Acid Synthetase 57
Chain-Length Control 58
Supply of Extramitochondrial Acetyl-CoA 59
Cleavage of Citrate Coming from the Mitochondria 59
Formation from Acetoacetate of Mitochondrial Origin 62
Formation from Acetyl-Aspartate of Mitochondrial Origin 62
Synthesis from Acetate 62
Formation from Acetyl-Carnitine of Mitochondrial Origin 63
Cleavage of Citrate Formed in the Cytosol 63
Generation of Reducing Equivalents 64
Generation of NADPH 64
Generation of NADH 65
Comment on Fatty Acid Synthesis 67
Elongation of Fatty Acids 68
Desaturation of Fatty Acids 69
Fatty Acid Uptake from Circulating Chylomicrons 70
Fatty Acid Activation and Oxidation 71
Fatty Acid Activation 71
Carnitine Mediated Fatty Acid Transport Across the Mitochondrial Membrane 72
Fatty Acid Oxidation 73
Oxidation of Even Chain Fatty Acids 73
Oxidation of Odd Chain Fatty Acids 75
Oxidation of Unsaturated Fatty Acids 75
Omega-Oxidation of Fatty Acids 75

Part I. Obesity VII

Triglyceride Synthesis 76
Comment on Triglyceride Synthesis 79
Triglyceride Hydrolysis 79
Triacylglycerol Lipase 79
Monoacylglycerol Lipase 79
Esterase 79
Phospholipases 79
Acid Lysosomal Lipase(s) 80
Comment on Triglyceride Hydrolysis 80

3. Other Tissues 80
Intestinal Mucosa 80
Glycerophosphate Metabolism 81
Glycerol 3-Phosphate 81
2-Mono-Glycerides 81
Fatty Acid Origin and Activation 81
Triglyceride Synthesis 82
Glycerol-3-Phosphate Pathway 82
Monoglyceride Pathway 82
Comment on Triglyceride Synthesis 83
Triglyceride Hydrolysis 83
Brain 84
Heart 85
Skeletal Muscle 88
Kidney 89
Miscellaneous 90

B. Regulation of Enzymes of Fatty Acid and Triglyceride Metabolism 91

1. Regulation by Hormonal Factors 91
Insulin 96
Adipose Tissue 96
Enzymes of Fatty Acid and Triglyceride Metabolism 96
Adenylate Cyclase-Phosphodiesterase and Protein Kinase-Phosphoprotein Phosphatase Systems 98
Liver Tissue 100
Enzymes of Fatty Acid and Triglyceride Metabolism 100
Adenylate Cyclase-Phosphodiesterase and Protein Kinase-Phosphoprotein Phosphatase Systems 101
Other Tissues 101
Glucagon 101
Adipose Tissue 101
Enzymes of Fatty Acid and Triglyceride Metabolism 101
Adenylate Cyclase-Phosphodiesterase and Protein Kinase-Phosphoprotein Phosphatase Systems 102
Liver Tissue 102
Enzymes of Fatty Acid and Triglyceride Metabolism 102
Adenylate Cyclase-Phosphodiesterase and Protein Kinase-Phosphoprotein Phosphatase Systems 104
Other Tissues 104
Catecholamines 104
Adipose Tissue 104
Enzymes of Fatty Acid and Triglyceride Metabolism 104
Adenylate Cyclase-Phosphodiesterase and Protein Kinase-Phosphoprotein Phosphatase Systems 106
Liver Tissue 107
Other Tissues 107

VIII Contents

Corticosteroids 108
Adipose Tissue 108
Liver Tissue 109
Other Tissues 109
Sex Hormones 109
Adipose Tissue 109
Liver Tissue 110
Other Tissues III
Growth Hormone, ACTH, TSH, LH, and Lipolytic Pituitary Peptides III
Adipose Tissue III
Enzymes of Fatty Acid and Triglyceride Metabolism III
Adenylate Cyclase-Phosphodiesterase and Protein Kinase-Phosphoprotein Phosphatase Systems 112
Liver Tissue 113
Other Tissues 114
Thyroid Hormones 114
Adipose Tissue 114
Enzymes of Fatty Acid and Triglyceride Metabolism 114
Adenylate Cyclase-Phosphodiesterase and Protein Kinase-Phosphoprotein Phosphatase Systems 114
Liver Tissue 115
Other Tissues 117

2. Regulation by Nutritional Factors 118
Fasting 119
Adipose Tissue 119
Liver Tissue 120
Other Tissues 122
Fasting-Refeeding 122
Refeeding a Carbohydrate-Rich (Fat-Poor) Diet 123
Adipose Tissue 123
Liver Tissue 123
Other Tissues 125
Refeeding a Fat-Rich Diet 125
Effect of Dietary Carbohydrates 126
Adipose Tissue 126
Liver Tissue 127
Other Tissues 129
Effect of Dietary Fat 129
Adipose Tissue 129
Liver Tissue 130
Other Tissues 132
Effect of Dietary Proteins and Amino Acids 133
Adipose Tissue 133
Liver Tissue 133
Other Tissues 134
Food Intake Pattern 134
Adipose Tissue 134
Liver Tissue 135

3. Regulation by Other Factors 136
Development 136
Adipose Tissue 136
Liver Tissue 137
Other Tissues 139
Ageing 140
Adipose Tissue 140
Liver Tissue 141
Other Tissues 142

Part II. Diabetes mellitus IX

Physical Exercise 142
Cold Exposure 143
Other 144

C. Enzymatic and Metabolic Disorders Present in Obesity 145
1. Enzyme Changes in Adipose, Hepatic, and Other Tissues 146
Adipose Tissue 146
Non-Human Adipose Tissue 146
Human Adipose Tissue 149
Liver Tissue 152
Other Tissues 155

2. Discussion on Enzyme Changes in Obesity 156
Enzyme Changes in Adipose Tissue 158
Functional Significance 158
Lipogenic Enzymes 158
Lipolytic Enzymes 160
Possible Causative Factors 160
Genetic Factors 160
Hormonal Factors 161
Nutritional Factors 163
Other Factors 164
Enzyme Changes in Liver Tissue 164
Functional Significance 164
Possible Causative Factors 167
Genetic Factors 167
Hormonal Factors 167
Nutritional Factors 170
Other Factors 171
Enzyme Changes in Other Tissues 171
Insulin Resistance 171
Insulin Resistance of the Various Tissues 171
Adipose Tissue 171
Part II. Diabetes mellitus

A. Regulatory Enzymes of Metabolic Pathways Most Involved in Diabetes 180

1. Liver Tissue 180

Enzymes of Glycogen Metabolism 180
Glycogen Synthesis 182
Phosphoglucomutase 182
Glucose-1-Phosphate Uridylyltransferase 182
Glycogen Synthase 182
Glycogen-Synthase Kinase and Glycogen-Synthase Phosphatase 183
Glycogen Branching Enzyme 184

X Contents

Glycogen Degradation 184
Glycogen Phosphorylase 184
Phosphorylase Kinase (Ca-Dependent Protein Kinase). Phosphorylase Kinase
Kinase (cAMP-Dependent Protein Kinase). Phosphorylase Phosphatase and
Phosphorylase-Kinase Phosphatase (Phosphoprotein Phosphatase) 185
Adenylate Cyclase-Phosphodiesterase System 188
The Glycogenolytic Cascade 189
Glycogen Debranching Enzyme System (4-Alpha-Glucanotransferase and Amylo1,6-Glucosidase) 190
Phosphoglucomutase and Glucose-6-Phosphatase 190
Comment on Glycogen Metabolism in Liver 190
Glucose Degradation 191
Glycolysis 191
Hexokinase and Glucokinase 194
Hexokinase and Glucokinase Isoenzymes 195
Hexokinase and Glucokinase Distribution in Liver and Hepatocytes 196
Phosphofructokinase 197
Fructose-Diphosphate Aldolase 198
Pyruvate Kinase 199
Lactate Dehydrogenase 201
Pentose Cycle 201
Comment on Glucose Metabolism in Muscle 248
Glycogen and Glucose Metabolism in Human Muscle 250
Glycogen Metabolism 250
Glycolysis 251
Other Pathways 251
Comment 253
Fructose Metabolism 253
Ketone Body Utilization 254
Other Pathways 255
Kidney 256
Glycogen Metabolism 256
Glucose Degradation (Glycolysis and Pentose Cycle) 257
Gluconeogenesis 258
Glucose-6-Phosphatase 258
Hexosediphosphatase 258
Phosphoenolpyruvate Carboxykinase (GTP) 258
Pyruvate Carboxylase 259
Other Enzymes 259
Comment 259
Fructose Metabolism 260
Ketone Body Utilization 261
Brain 261
Glycogen Metabolism 261
Glucose Degradation (Glycolysis and Pentose Cycle) 261
Other Pathways 263
Intestinal Mucosa 264
Other Tissues 265

3. Pancreatic Islets 266
Enzymes of the Main Metabolic Pathways 266
Glycogen Metabolism 266
Adenylate Cyclase-Phosphodiesterase and Protein Kinase-Phosphoprotein Phosphatase Systems 266
Glucose Phosphorylation 268
Glycolysis 269
Pentose Cycle 270
Polyol Pathway 270
Fat Metabolism 270
Other Pathways 271
Enzyme Activities and Insulin Secretory Mechanism 271
Stimulation of Insulin Release by Glucose 271
Regulator Site Mechanism 272
Substrate Site Mechanism 274
Stimulation of Insulin Release by Amino Acids and Fats 277
Insulin Release and Hormones 278
Concluding Remarks 278

4. Insulin-Degrading Enzymes 279
Protein-Disulfide Reductase (Glutathione) 280
Liver 280
Pancreas 281
Other Tissues 281
Insulin-Degrading Protease(s) 281
Liver 281
Other Tissues 282

XII Contents

B. Regulation of Enzymes of Carbohydrate and Ketone Body Metabolism 283

1. Regulation by Hormonal Factors 283
Insulin 289
Liver Tissue 289
Glycogen Metabolism 289
Glycolysis 291
Pentose Cycle 293
Gluconeogenesis 293
Other Pathways 295
Muscle (Skeletal and Cardiac) 295
Glycogen Metabolism 295
Glycolysis 297
Other Pathways 298
Adipose Tissue 298
Glycogen Metabolism 298
Glycolysis 298
Pentose Cycle 299
Other Pathways 299
Other Tissues 299
Comment on Insulin Action 300
The Hexokinase Acceptor Theory of Insulin Action 301
Protein Kinase-Phosphoprotein Phosphatase Systems and the Mechanism of Insulin Action 302
Glucagon 302
Liver Tissue 302
Glycogen Metabolism 302
Glycolysis 304
Pentose Cycle 304
Gluconeogenesis 305
Other Pathways 306
Other Tissues 307
Catecholamines 307
Liver Tissue 307
Glycogen Metabolism 307
Glycolysis 309
Pentose Cycle 309
Gluconeogenesis 309
Muscle (Cardiac and Skeletal) 310
Glycogen Metabolism 310
Glycolysis 311
Gluconeogenesis 312
Other Tissues 312
Corticosteroids 312
Liver Tissue 312
Glycogen Metabolism 312
Glycolysis 313
Pentose Cycle 313
Gluconeogenesis 314
Fructose Metabolism 316
Ketogenesis 316
Other Pathways 316
Other Tissues 316
Sex Hormones 317
Liver Tissue 317
Glycolysis and Gluconeogenesis 317
Pentose Cycle 317

Part II. Diabetes mellitus XIII

Other Pathways 317
Other Tissues 318
Thyroid Hormones 319
Liver Tissue 319
Glycogen Metabolism 319
Glycolysis 319
Pentose Cycle 319
2. Regulation by Nutritional Factors 323
Fasting 323
Liver Tissue 323
Glycogen Metabolism 323
Glycolysis 324
Pentose Cycle 324
Gluconeogenesis 324
Fructose Metabolism 325
Ketone Body Production 325
Other Pathways 325
Adipose Tissue 325
Glycogen Metabolism 325
Glycolysis 326
Pentose Cycle 326
Other Pathways 326
Muscle (Cardiac and Skeletal) 326
Glycogen Metabolism 326
Glycolysis 327
Other Pathways 327
Other Tissues 327
Fasting-Refeeding 327
Refeeding a Carbohydrate-Rich Diet 327
Liver Tissue 327
Adipose Tissue 329
Other Tissues 330
Refeeding a Fat-Rich Diet 330
Liver Tissue 330
Adipose Tissue 331
Effect of Dietary Carbohydrates 331
Liver Tissue 331
Glycogen Metabolism 331
Glycolysis 331
Pentose Cycle 332
Gluconeogenesis 332
Fructose Metabolism 333
2. Discussion on Enzyme Changes in Diabetes 386
 Enzyme Changes in Liver Tissue 386
 Functional Significance 386
 The Glycogenogenesis-Glycogenolysis Balance 386
 The Glycolysis-Gluconeogenesis Balance 387
 Enzymes of Lipogenesis and Pentose Cycle 388
 Fructose Metabolism 390
 Possible Causative Factors 390
 Hormonal Factors 390
 Nutritional Factors 392
 Other Factors 393
 Enzyme Changes in Extra-Hepatic Tissues 393
 Adipose Tissue 393
 Functional Significance 393
 Possible Causative Factors 394
Part III. Hyperlipoproteinemias

A. General Concepts on Lipoproteins and Hyperlipoproteinemias 398

1. Lipoproteins 398
2. Hyperlipoproteinemias 402

B. Hypertriglyceridemias 404

1. Enzymes of Triglyceride Metabolism 404
 Synthesis of Plasma Triglycerides 404
 Synthesis and Secretion of Triglycerides by Liver 404
 Synthesis and Secretion of Triglycerides by Intestine 405
 Clearance of Plasma Triglycerides 406
 Plasma Postheparin Lipolytic Activity (PHLA) 406
 Release of PHLA by Heparin 408
 PHLA Activators and Inhibitors 408
 Substrate and Positional Specificity of PHLA 410
 Effect of PHLA on Lipoprotein Structure 411
 Lipoprotein Lipase in Adipose Tissue 411
 Effect of Heparin, Activators and Inhibitors on Adipose Tissue LPL 412
 Specificity and Site of Action of Adipose Tissue LPL 413
 Lipoprotein Lipase in Heart 415
 Lipoprotein Lipase in Skeletal Muscle, Lung, Kidney and Other Extrahepatic Tissues 416
 Lipoprotein Lipase in Liver 417
 Post-LPL Steps in the Clearance of Plasma Triglycerides 418

2. Enzyme Regulation 419
 Regulation by Hormonal Factors 419
 Insulin 419
 Triglyceride Synthesis and Secretion by Liver 419
 Clearance of Plasma Triglycerides 420
 Glucagon 420
 Triglyceride Synthesis and Secretion by Liver 420
 Clearance of Plasma Triglycerides 421
Sex Hormones 421
Triglyceride Synthesis and Secretion by Liver 421
Clearance of Plasma Triglycerides 421
Other Hormones 422
Lipolytic Hormones 422
Corticosteroids 422
Thyroid Hormones 422
Regulation by Nutritional Factors 423
Fasting 423
Fasting-Refeeding 424
Effect of Dietary Carbohydrates 424
Effect of Dietary Fat 425
Other Dietary Factors 426
Regulation by Other Factors 427
Ageing
Physical Exercise 427
Other Factors 427

3. Enzyme Alterations in Hypertriglyceridemias 428
Deficiency in Plasma Triglyceride Clearance 428
Type I Hyperlipoproteinemia 428

Part III. Hyperlipoproteinemias XVII

Type IIb, III, IV, and V Hyperlipoproteinemias 429
Clearance by LPL 429
Post-LPL Steps in Triglyceride Clearance 431
Secondary Deficiency in Plasma Triglyceride Clearance 432
Increase in Plasma Triglyceride Production 433
Type IIb IV, and V Hyperlipoproteinemias 433
Increased Plasma Triglyceride Production Secondary or Associated to Other Disease States 434

C. Hypercholesterolemia 436

1. Enzymes of Cholesterol Metabolism 436
Cholesterol Synthesis 436
Cholesterol Synthesis in Liver 436
Enzymes of Hydroxymethylglutaryl-CoA Synthesis 436
Hydroxymethylglutaryl-CoA Reductase 438
Enzymes of the Post-Mevalonate Steps 439
Comment 440
Regulation by Other Factors 464
Development and Ageing 464
Diurnal Rhythm 466

3. Hypercholesterolemias 468
Familial Hypercholesterolema (Type II Hyperlipoproteinemia) 468
Other Conditions 470
Types IV and III Hyperlipoproteinemia 470
Obesity 471
Atherosclerosis 471
Others 471

Part IV. Atherosclerosis and Diabetic Microangiopathy

Introduction 474

A. Regulatory Enzymes in the Arterial Wall 475

1. Enzymes of Energetic Metabolism 475
Glycogen Metabolism 475
Glycolysis 475
Pentose Cycle 477
The Polyol Pathway 477
Krebs Cycle 478
Others 479
Comment on Energetic Metabolism in Arterial Tissue 479

2. Enzymes of Proteoglycan, Glycoprotein, and Elastin Metabolism 480
Metabolism of Proteoglycans, Glycoproteins, and Collagen 480
Synthesis of Glycosaminoglycans, Glycoproteins, and Collagen 480
Formation of UDPsugars 482
Synthesis of the Carbohydrate Portion of Proteoglycan and Glycoprotein Molecules 483
Degradation of Proteoglycans and Glycoproteins 487
Proteoglycan and Glycoprotein Degradation and Lysosomes 491
Synthesis and Degradation of Elastin 491

3. Enzymes of Lipid Metabolism in the Arterial Wall 492
Triglyceride and Phospholipid Metabolism 492
Triglyceride Metabolism in the Arterial Wall 492
Lipoprotein Lipase (LPL) in the Arterial Wall 492
Fatty Acid and Triglyceride Synthesis 492
Lipase and Carboxylesterase 494
Phospholipid Metabolism in the Arterial Wall 494
Phospholipid Synthesis 494
Phospholipases 494
Cholesterol Metabolism 495
Cholesterol Synthesis and Uptake in the Arterial Wall 495
Cholesterol Ester Formation and Hydrolysis in the Arterial Wall 495
Cholesterol Acyltransferase 495
Lecithin-Cholesterol Acyltransferase 496

Part IV. Atherosclerosis and Diabetic Microangiopathy XIX

Cholesterol Esterase 496
Comment on Cholesterol Ester Formation and Hydrolysis in the Arterial Wall.497

B. Enzyme Regulation in the Arterial Wall 498
1. Regulation by Hormonal Factors 498
 Insulin 498
 Energetic Metabolism 498
 Other Metabolic Processes 498
 Thyroid Hormones 498
 Sex Hormones 499
 Other Hormones 500

2. Regulation by Nutritional Factors 500

3. Regulation by Other Factors 501
 Development and Ageing 501
 Enzymes of Energetic Metabolism 501
 Proteoglycan and Glycoprotein Metabolism 504
 Lipid Metabolism 504
 Other Factors 505

C. Enzyme Changes in Atherosclerosis and Diabetic Microangiopathy 506

1. Atherosclerosis 506
 Changes in Enzymes of Energetic Metabolism 506
 Glycogen Metabolism 506
 Glycolysis 506
 Pentose Cycle 507
 Polyol Pathway 507
 Krebs Cycle 507
 Other Pathways 508
Comment on the Energetic Metabolism in Atherosclerotic Arteries 509
Enzyme Changes Related to Sex, Age, Type of Artery and Species 510
Enzyme Changes in Early Stages of Experimental Atherosclerosis and in Atherosclerosis-Favoring Conditions 511
Tentative Interpretation 513
Changes in Enzymes of Proteoglycan, Glycoprotein, and Elastin Metabolism 313
Metabolism of Proteoglycans, Glycoproteins, and Collagen 513
Metabolism of Elastin 515
Comment on Proteoglycan, Glycoprotein and Elastin Metabolism in Atherosclerotic Arterial Tissue 516
Enzyme Changes Related to Sex, Age, Type of Artery and Species 516
Enzyme Changes in the Early Stages of Atherosclerosis and in Atherosclerosis-Favoring Pathological Conditions 517
Role of Lysosomes in the Alteration of Proteoglycan and Glycoprotein Metabolism in the Atherosclerotic Arterial Walls 517
Changes in Enzymes of Lipid Metabolism 521
Triglyceride Metabolism 521
Lipoprotein Lipase (LPL) of the Arterial Wall 521
Lipoprotein Lipase in Plasma 522
Fatty Acid Synthesis 522

XX Contents

Triglyceride Synthesis 523
Lipase and Carboxylesterase Activities 523
Phospholipid Metabolism 524
Synthesis of Phospholipids 524
Phospholipase Activities 524
Cholesterol Metabolism 525
Cholesterol Synthesis 525
Cholesterol Ester Formation and Hydrolysis 525
Comment on Lipid Metabolism in the Atherosclerotic Arterial Tissue 527
Enzyme Changes Related to Sex, Age, Type of Artery and Species 527
Enzyme Changes in the Early Stage of Atherosclerosis and in Atherosclerosis-Favoring Pathological Conditions 528
An Integrated View of Enzyme Changes in Atherosclerotic Arteries 529

2. Diabetic Microangiopathy 532
Changes in Enzymes of Glycoprotein Synthesis 532
Changes in Enzymes of Glycoprotein Degradation 534
Metabolism of 2,3-Diphosphoglycerate in Red Cells 536
Comment on Enzyme Changes in Diabetic Microangiopathy 538
Progress in biochemistry in the last half-century, by focusing the fundamental role of the many, and yet not all known, enzyme activities which play a key role in normal cell metabolism and its pathological alterations, has made available to medical science a large wealth of knowledge, usefully applied to both pathogenetic and clinical problems.

Dr. Francesco Belfiore and his younger co-workers, working in the Institute of Clinical Medicine which I had the honor to lead as Chairman, have been engaged for many years in research concerned with metabolic diseases. Having available the large number of in- and out-patients of this department, Dr. Belfiore has focused his interest primarily on enzyme alterations in diabetes mellitus and obesity, subjects which were investigated with research including etio-pathogenetic, clinical and therapeutic aspects. Original results obtained in this field have already appeared in several published papers, and concern primarily the role of key enzymes of carbohydrate and lipid metabolism in various tissues, especially the hepatic and adipose tissues, both in the normal condition and in pathological states; the relationship between insulin resistance and the pathogenesis of obesity, and the role of lysosomal enzymes in the pathogenesis of vascular complications of diabetes, as these enzymes participate in the catabolism of glycoproteins and mucopolysaccharides, whose accumulation in the capillary basement membrane and in arterial walls characterizes the histopathological picture of the diabetic micro- and macro-angiopathy.

In this book, Dr. Belfiore summarizes the results of his own work on enzyme changes in obesity, diabetes mellitus, hyperlipoproteinemias and atherosclerosis, and integrates them, with meticulous objectivity, to the large body of literature on these subjects. What has come out is an up-to-date and comprehensive review, which will certainly be appreciated by physicians and scientists interested in metabolic diseases or specifically engaged in enzymology, who will draw from this book stimulus to further research, in the interest of scientific progress and possible medical applications.

Saverio Signorelli

Preface

Enzymes certainly represent a major factor in the regulation of metabolic processes, which may often be regarded as epiphenomena of enzymatic events.
This book is devoted to the description of the enzyme alterations that constitute the basis of the metabolic changes characteristic of such diseases as obesity, diabetes mellitus, hyperlipoproteinemia and atherosclerosis, i.e. metabolic diseases that are not due to well-established genetic enzyme defects, but in which a key position is held by alterations in enzyme regulation. The description of the enzyme changes occurring in each of the diseases mentioned above is preceded by a detailed account of the characteristics and metabolic function of the regulatory enzymes involved, followed by a mention of enzyme regulation by factors such as hormones, nutrients, age, development, and environmental factors. This has been judged useful by us as a necessary background to understanding the alterations occurring in diseases, and as basic information which may stimulate further research on pathological conditions.

The subject of this review, as appears from the definition given above, encompassing the characteristics and function of the key enzymes of the main metabolic pathways, their control by regulatory factors, and their changes in metabolic diseases, is exceedingly wide and perhaps beyond practical limits of space and time. Therefore, several limitations have been introduced. First of all, in the various chapters of this book, only those enzymes which are generally thought to play a ‘key’ or ‘regulatory’ role have been considered. However, distinction between regulatory and non-regulatory enzymes is not always simple and perhaps is arbitrary in some instances. Therefore, readers may not always agree with the line followed by us. With only occasional exceptions, our attention has been mainly focused on the behavior of enzymes in the tissues of mammals, with the exclusion of other species which may possess peculiar metabolic characteristics. Furthermore, discussion has been centered on tissues of general metabolic significance, while other tissues, such as bone, skin, mammary gland, spleen and others, have not been considered. In the chapters on regulatory factors, prostaglandins have been excluded, since the rapidly growing literature on these compounds would require an entire volume to be covered. In the chapter on enzyme regulation by nutritional factors, the important metabolic effects of ethanol intake and of vitamin and mineral deficiency or excess have also not been included. Even with these limitations, the vastness of the subject remains so great that a complete review of literature is practically impossible. It has been necessary therefore to be selective. Moreover, of some works dealing with several metabolic aspects of a given subject, only data of mainly enzymatic concern have been cited. In view of these considerations, I apologize in advance to the many who will find that their work has not been mentioned or has not been given the space it certainly deserves.

Preface XXIII

In a work devoted to enzymes, nomenclature is always a troublesome
problem, since one has to choose between trivial names, largely diffused but scientifically often unacceptable, and the systematic names, which are of less immediate understanding and may impair the smoothness of reading. In this book, we followed the ‘recommended names’ recently suggested by the International Union of Pure and Applied Chemistry and the International Union of Biochemistry (1848, 1849), with only few exceptions, and we listed the corresponding E.C. numbers and catalyzed reactions in the appendix. Moreover, in describing changes in enzyme activities, we have often omitted the term ‘activity’ to avoid repetition. However, the described changes must be intended as referring to changes in the measured enzyme activity, since when the cause of the change is known (change in enzyme concentration due to altered synthesis and/or degradation, allosteric effects, covalent modification, etc.) it has been specified.

While licensing this book for printing, I wish to express my gratitude to all those who have taught me during my academic career, and to the younger colleagues, members of our research group, whose names are mentioned in the reference list. My special thanks and deep appreciation are due to my wife Dr. Silvia Iannello, who, with devotion, shared with me the heavy privations imposed by this multi-year work, and who gave me invaluable aid by meticulously preparing the long reference list and by undertaking the many chores incident to publication.

Finally, sincere thanks are due to the Publisher and his staff for their help and assistance.

Francesco Belfiore

Dedicated with gratefulness to

Prof. Saverio Signorelli,
Chairman of Clinical Medicine,
University of Catania Medical School