The Congenital Methemoglobinemias

Physiology and Pathophysiology of the Hemoglobin Metabolism

By Otmar Tönz

University Children's Hospital of Berne

With 28 figures and 6 tables

BASEL (Switzerland) S. KARGER NEW YORK

Published simultaneously as Bibliotheca Haematologica, No. 28
Redactor: A. Hässig, Berne

At a reduced price for subscribers to “Acta Haematologica” and “Vox Sanguinis”

S. Karger AG, Arnold-Böcklin-Strasse 25, 4000 Basel (Switzerland)

All rights, including that of translation into other languages, reserved.
Photomechanic reproduction (photocopy, microcopy) of this book or part of it without special permission of the publishers is prohibited.

©

Copyright 1968 by S. Karger AG, Basel
Printed in Switzerland by Schellenberg-Druck, Pfäfikon ZH
Clichés: Aberegg-Steiner Sc Ge. AG, Bern

Contents

Acknowledgements V

Introduction 1

I. The Pathological Significance of Metbemoglobin 2

II. Energy Metabolism of the Erythrocytes 5

1. Embden-Meyerhof Pathway 7
2. Pentose-Phosphate Shunt 7
3. Energy Gain 8
4. Influence of Redox Substances on the Pentose Shunt........................... 9
5. Reduction of Glutathione 15

III. Iron Binding in Hemoglobin 18

IV. Formation and Reduction of Metbemoglobin 24
1. Formation of Methemoglobin 24
2. Methemoglobin Reduction 26

V. Methemoglobin and Aging of the Erythrocytes 32
1. Hemoglobin 33
2. Glycolysis 36

VI. Methemoglobin Formation in Infantile Erythrocytes................................... 40

VII. Hemoglobin-M-Disease 45
1. Physico-chemical Properties of Hb M 47
 (a) Spectroscopy 47
 (b) Functional Behaviour 49
 (c) Electrophoretic Properties 50
2. Group Classification 51
3. Structure 53
4. Genetic and Clinical Problems 56
 (a) Genetics 56
 (b) Clinical Patterns 58
 (c) Differential Diagnosis 59
5. Diagnosis 60
6. Therapy 60
7. Hemoglobin M Related Blood Pigment 61

IV Contents

VIII. Congenital Ectsymopenic Methemoglobinemia 63
1. Genetics 64
2. Pathogenesis 65
 (a) NADH Diaphorase Defect 65
 (b) Methemoglobinemias without NADH- Diaphorase Defect ... 66
IX. Methods 75
1. Determination of Methemoglobin 75
2. Morphological Demonstration of Methemoglobin 76
3. Reduction of Methemoglobin: Use of Intact Cells 79
4. Methemoglobin Reduction: Induction by Methylene Blue 81
5. Methemoglobin Reduction: Examinations on the Hemolysate 84
6. Measurement of the Diaphorase Activity by the Optical Test 85
7. Demonstration of NADH Diaphorase by Means of Agar Gel Electrophoresis 91
8. Spectrographic and Functional Studies of Hemoglobin M 93

X. Results 100
A. Hemoglobin M 100
1. Spectrophotometric Data 102
2. Estimation of the Proportion of Hemoglobin M 107
3. Electrophoresis 108
4. Formation of the Cyanide Complex 109
5. Rate of Reduction 110
6. Rate of Oxidation 111
7. Globin Structure 111
Discussion 112

B. Enzymopenic Methemoglobinemias 114
1. Clinical Observations 116
2. Measures of Methemoglobin Reduction 117
3. Determination of the Diaphorase Activity 119
4. Morphological Demonstration of Diaphorase Activity 121
5. Electrophoretic Demonstration of Diaphorase 126
Discussion 127

XI. Conclusion 131

References 132

Acknowledgements
I am deeply indebted to Prof. E. Rossi, director of the University Children’s Hospital, Berne, for continuous support and encouragement during the time of this work. To Prof. Betke, director of the University Children’s Hospital, Munich, I wish to extend my sincerest appreciation. Under his supervision I first got acquainted with the techniques and methodology of work with red cells and methemoglobin. To Dr. U. Wiesmann I am very grateful for valuable discussions and help with biochemical problems. Furthermore I wish to express my gratitude to Miss E. Ernst for skillful technical assistance; to Mrs. de Weck for translation and to Dr. Humphrey Gyde (Lewisham Hospital, London) for correcting the proofs. I am obliged to Mr. M. Stillhard of the Karger Company for careful edition of this monograph. Last, but by no means least, I wish to thank my wife. Her encouragement, help and support made this work possible.

Lucerne, January 1968

O. Tönz

Supported by the ‘Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung’. Grant number 3780.