Progress in
Experimental Tumor Research
Fortschritte der experimentellen Tumorforschung
Progrès de la Recherche expérimentale des Tumeurs

Edited by

Vol. 5
Contributors:

F. Bischoff, Santa Barbara, Calif
G. Bryson, Santa Barbara, Calif.
T. L. Dao, Buffalo, N.Y.
C. M. Martin, Jersey City, N.J.
W. E. Poel, Pittsburgh, Penna.
B. A. Rubin, Radnor, Penna.
K. Setälä, Helsinki

with 93 figures

BASEL (Schweiz) S. KARGER NEW YORK

Distributed in North America simultaneously by

S. Karger AG, Arnold-Böcklin-Straße 25, Basel (Switzerland)

All rights, including that of translation into foreign languages, reserved.
Photomechanic reproduction (photocopy, microcopy) of this book or part of it without special
permission of the publishers is prohibited.

©
Copyright 1964 by S. Karger AG, Basel
Printed in Switzerland by Buchdruckerei Stäfa AG, S tafia ZH
Clichés: Abcregg-Steiner 6c Cie. AG, Bern

This volume is dedicated to

the more than seventy authors
who have generously taken time out from their busy careers to write for Progress in Experimental Tumor Research, and have made this series what it is.

Editor’s Foreword

It is heartening to learn that the countless hours spent by the authors, the publisher and editorial personnel during the past four years are being rewarded by steady, ever-increasing use of the Progress in Experimental Tumor Research series by cancer researchers throughout the world. It seems expedient at this time to re-evaluate the editorial philosophy of the series with this twofold purpose in mind: 1. to maintain, or better still, to accelerate this gratifying pace of dissemination of useful knowledge, and 2. to render even greater service to the scientific community. Here are our conclusions:

The basic editorial policy of Progress in Experimental Tumor Research remains as valid today as it was in 1960, and we shall continue to publish ‘monographic presentations at short intervals, in fast-moving segments of experimental tumor research, by authors who are active in these areas.’ We shall continue to include ‘the historical background for such work, as well as extrapolations and speculations for which space would not be available in regular journals’.

The selection of subject matter and new authors will henceforth be based on the suggestions of past authors who have contributed to the series. These investigators, numbering more than seventy, are among the best informed individuals in the field of cancer research and their forecasts of trends will be the most valid ones obtainable. As the series progresses, this group of experts will grow and the roots of its advice will thus become increasingly broad and comprehensive.

Since more material than could be published in one book came in for the original Volume V, the present work will be followed within weeks by Volume VI (see Table of Contents, page 308) and from now on, whenever possible, two volumes will appear each year. The added burden imposed by this accelerated publication schedule is cheerfully accepted by the publisher, our editorial assistant, Mrs. Mary Miller, and the editor, in the hope of offering an even more useful service to those who are committed to the important task of cancer research.

F. Homburger, M.D.

Editor
INDEX

Defective Cell Maturation, an Alternative to Accelerated Cell Division as Target for Cancer Therapy

Kai Setälä, Helsinki

I. Introduction 2
II. Review of Rationale for Current Anticancer Principles 3
A. Current methodologie fundamentals 3
1. Target of anticancer action in chemotherapy 5
2. Target of anticancer action in radiotherapy 6
B. Disadvantages of current strategy 6
III. Reorientation of Cancer Therapy 7
A. Methodologie fundamentals 7
B. Foundations for design of anticancer strategy 8
1. Growth concept 8
2. Target selection 8
3. Strain-dependent host factors 10
 a) Significance of mouse strain for tumorigeneous response 10
 b) Significance of mouse strain for morphogenetic response to nonspecific tumor-enhancing noxae 12
 c) Mitotic aberrations in mouse epidermis 14
 aa) Strain dependence of mitotic aberrations under normal conditions 14
 bb) Mitotic aberrations provoked by mere mechanical traumatization of the skin 15
 cc) Mitotic aberrations provoked by nonspecific tumor-enhancing noxae 15
 dd) Mitotic aberrations provoked by (teratogen) sodium pentobarbital 18
IV. Dissimilarities Between Benign and Malignant Epidermal Hyperplasia of Mice as Fundamental Elements of a Model System 24
A. Characteristics of benign epidermal hyperplasia 26
B. Characteristics of malignant epidermal hyperplasia 26
C. Author’s theory of skin carcinogenesis mechanism in mice 30
D. Corroborative observations by later investigators 32
V. Dissimilarities in Response of Benign and Malignant Epidermal Hyperplasia to the Same External Noxae 33
The Cause and Nature of Cancer

William E. Poel, Pittsburgh, Penna.

I. Introduction 54
II. The Cause of Cancer 54
 A. Normal cell + carcinogen cancer cell 54
 B. Cancer: A terminal stage of normal cell proliferation under inadequate
 homeostatic restraint 56
III. Carcinogenesis Without a Carcinogen 56
 A. In vitro: Cell proliferation divorced from homeostatic mechanisms of the
 host 56
 B. In vivo:
 1. Cell proliferation unimpaired by contact inhibition 58
 2. Cell proliferation uninhibited by hormonal repressors 58
 3. Cell proliferation when systemic homeostatic mechanisms are repressed
 or impaired 61
 4. Cell proliferation enhanced by persistent excessive hormonal stimulation
 62
 C. Direct and indirect carcinogenic pathways 63
IV. Carcinogen-Induced Carcinogenesis 67
 A. The indirect pathway in environmental carcinogenesis 67
 B. Chemical carcinogenesis 69
 1. Pre-malignant changes in skin carcinogenesis 69
 2. Malignancy in skin carcinogenesis 71
 C. X-rays and viruses as carcinogens 72
 D. Carcinogens as carcinolytic agents 75
V. Cytogenetics, Molecular Biology, and Malignancy 76
VI. Discussion: The Resolution of Old Oncological Dilemmas 78
VII. Summary 80
VIII. References 81
Carcinogenesis Through Solid State Surfaces

Fritz Bisghoff and George Bryson, Santa Barbara, Calif.

Introduction 86
Physical Form of the Implant 87
Serendipity 87
Organic polymers 88
Purity of the polymer 91
Metals 92
Asbestos and glass 93
Silicone rubber 95
Confirmatory evidence 95
Water-soluble macromolecules 96
Histopathologic Divergencies Resolved 97
Initial (precancerous) period 98

Index IX

Primary carcinogenic focus 98
Critical period for the film in situ 99
Latent quiescent period 100
Metabolism during the latent period 100
Variability of the preparatory period 101
Differences of action of macromolecules resulting from their water solubility or water insolubility 101
Histopathologic Mechanisms 102
Carcinogenic role of inhibited inflammatory activity 102
Influence of powdered polymer on the precancerous capsule 102
Effects of chronic irritation and prolonged trauma 104
Role of the unbroken surface 105
Host sensitivity and tissue specificity 106
Malignant transformation of the fibroblast in vitro 107
The sarcoma arising from a fibroblast 108
Etiologic conditions of carcinoma production 109
Cholesterol Solid State Carcinogenesis 110
Nothdurft challenges Hieger’s explanation 110
Bischoff and Bryson interpret Hieger’s results 110
Tissue response to lipids 114
Tissue response to cholesterol powder versus cholesterol crystals 114
Hieger’s suspension compared with an undersaturated solution 115
Resorption differences between rats and mice 116
Correlation of cholesterol crystals with human neoplasms 116
Certain Theoretical Considerations 117
Surface resorption 117
The electro-piezo effect 118
Free radical theory 118
Interference with exchange 120
Influence of sex on local carcinogenesis 121
Conclusions Concerning Solid State Carcinogenesis 122
Justification of the concept 122
The human scene 122
Disenchantement with the subcutaneous test site 125
Summary 127
Acknowledgments 128

References 128

Interactions of Hydrocarbon Carcinogens with Viruses
and Nucleic Acids in Vivo and in Vitro

Christopher M. Martin, Jersey City, N.J.

I. Introduction 134
II. In Vivo Interactions 135
A. Hydrocarbon carcinogens and viruses 135
 1. Tumor viruses 135
 2. Non-tumor viruses 136

X Index

B. Hydrocarbon carcinogens and nucleic acids 142
C. Possible interpretations of in vivo interactions 143
III. In Vitro Interactions 144
A. Hydrocarbon carcinogens and viruses 144
 1. Mammalian viruses 144
 2. Bacteriophage 145
B. Hydrocarbon carcinogens and nucleic acids 145
 1. Nucleic acids of bacteriophage and of higher species 145
 2. Nature of interactions: Intercalation theory of Lerman 147
 3. Properties of carcinogens possibly related to nucleic acid binding . 148
IV. Significance of Interactions 150
A. Theories of carcinogen mutagenesis 150
Carcinogenesis of Mammary Gland in Rat

Thomas L. Dao, Buffalo, N.Y.

I. Introduction 158
II. Effects of Pituitary and Steroid Hormones 159
 1. Mammary tumor induction by anterior pituitary hormones 159
 2. Mammary tumor induction by prolonged administration of estrogens 161
 3. Pathophysiological changes in the pituitary gland after prolonged administration of estrogens 163
 4. Pathophysiological changes in the pituitary in the estrogen-deficient rat 165
 5. Relationship of the pituitary gland to estrogen effects on the mammary gland 166
 6. Conclusions 167
III. Effects of Polycyclic Hydrocarbons 168
 1. Route of administration 168
 2. Mammary tumors induced by carcinogenic hydrocarbons 170
 3. The role of steroid hormones in mammary tumor growth 172
 4. The role of pituitary hormones in mammary tumor growth 178
 5. Induction of liver metastases in rats bearing 7,12-DMBA-induced mammary cancer 187
 6. Conclusions 192
IV. Metabolism of Polycyclic Hydrocarbons in the Adrenal and Mammary Glands 195
 1. Toxicity of 3-MC and 7,12-DMBA 195
 2. Factors influencing tissue concentrations of polycyclic hydrocarbons 196
 3. Selective induction of adrenal necrosis by 7,12-DMBA 202
 4. Inhibition of 7,12-DMBA-induced adrenal necrosis by other polycyclic hydrocarbons 205
 5. Conclusions 209
V. Summary 211
VI. Bibliography 212

Index XI
Carcinogen-Induced Tolerance to Homotransplantation

B. A. Rubin, Radnor, Penna.
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>218</td>
</tr>
<tr>
<td>II. Experimental Studies</td>
<td>219</td>
</tr>
<tr>
<td>A. Genetic influences</td>
<td>219</td>
</tr>
<tr>
<td>1. Effects of carcinogens on the homograft response in various strains of inbred mice</td>
<td>219</td>
</tr>
<tr>
<td>2. Carcinogen treatment of hybrids</td>
<td>223</td>
</tr>
<tr>
<td>B. Nongenetic influences on homologous tumor growth</td>
<td>225</td>
</tr>
<tr>
<td>C. Genetic specificity of tumors grown in homologous hosts</td>
<td>226</td>
</tr>
<tr>
<td>D. Function of route of carcinogen administration</td>
<td>226</td>
</tr>
<tr>
<td>E. Transplantation of various tissues</td>
<td>228</td>
</tr>
<tr>
<td>1. Tumors (other than 6C3HED)</td>
<td>228</td>
</tr>
<tr>
<td>2. Normal tissues</td>
<td>230</td>
</tr>
<tr>
<td>3. Parabiosis</td>
<td>232</td>
</tr>
<tr>
<td>F. Correlation between carcinogenicity and tumor growth enhancement</td>
<td>233</td>
</tr>
<tr>
<td>1. Survey of various carcinogens and their analogs</td>
<td>233</td>
</tr>
<tr>
<td>2. Quantitation of tumor growth enhancement</td>
<td>237</td>
</tr>
<tr>
<td>3. Competitive interaction between strong and weak carcinogens</td>
<td>241</td>
</tr>
<tr>
<td>G. Studies on mechanisms of action</td>
<td>243</td>
</tr>
<tr>
<td>1. Effect of carcinogen treatment on the formation of circulating antibodies</td>
<td>243</td>
</tr>
<tr>
<td>2. Effect of known immunological inhibitors on the homograft response</td>
<td>245</td>
</tr>
<tr>
<td>3. Modification of the carcinogen effect</td>
<td>247</td>
</tr>
<tr>
<td>a) Agents which stimulate immune response</td>
<td>247</td>
</tr>
<tr>
<td>b) Chemical suppressants of immunity</td>
<td>251</td>
</tr>
<tr>
<td>H. Histological changes in lymphoreticular tissues</td>
<td>253</td>
</tr>
<tr>
<td>I. Immunological activities of carcinogens</td>
<td>254</td>
</tr>
<tr>
<td>1. Reduction of pre-existing tumor immunity</td>
<td>254</td>
</tr>
<tr>
<td>2. Duration of carcinogen-induced tolerance</td>
<td>255</td>
</tr>
<tr>
<td>3. Significance of the carcinogen treatment schedule</td>
<td>257</td>
</tr>
<tr>
<td>4. Nonspecificity of the carcinogen stimulus</td>
<td>258</td>
</tr>
<tr>
<td>J. Passive transfer of carcinogen-induced tolerance</td>
<td>260</td>
</tr>
<tr>
<td>1. Inoculation of newborn mice</td>
<td>260</td>
</tr>
<tr>
<td>2. Parabiosis</td>
<td>261</td>
</tr>
<tr>
<td>3. Inoculation of lethally irradiated mice</td>
<td>263</td>
</tr>
<tr>
<td>K. Tumor chemotherapy in carcinogen-treated mice</td>
<td>265</td>
</tr>
<tr>
<td>III. Discussion : Immunologic Implications of Carcinogenesis</td>
<td>267</td>
</tr>
<tr>
<td>IV. Summary</td>
<td>287</td>
</tr>
<tr>
<td>V. Acknowledgments</td>
<td>287</td>
</tr>
<tr>
<td>VI. References</td>
<td>287</td>
</tr>
</tbody>
</table>
Subject-Index Vol. 1 - Vol. 5 293

Index Vol. 1 - Vol. 5 306

Index Vol. 6-Vol. 8 (in preparation) 308