Progress in

Experimental Tumor Research
Fortschritte der experimentellen Tumorforschung
Progrès de la Recherche expérimentale des Tumeurs

Edited by


Vol. 5
Contributors:

F. Bischoff, Santa Barbara, Calif
G. Bryson, Santa Barbara, Calif.
T. L. Dao, Buffalo, N.Y.
C. M. Martin, Jersey City, N.J.
W. E. Poel, Pittsburgh, Penna.
B. A. Rubin, Radnor, Penna.
K. Setälä, Helsinki

with 93 figures

BASEL (Schweiz) S. KARGER NEW YORK

Distributed in North America simultaneously by

S. Karger AG, Arnold-Böcklin-Straße 25, Basel (Switzerland)

All rights, including that of translation into foreign languages, reserved.
Photomechanic reproduction (photocopy, microcopy) of this book or part of it without special
permission of the publishers is prohibited.

©
Copyright 1964 by S. Karger AG, Basel
Printed in Switzerland by Buchdruckerei Stäfa AG, S tafia ZH
Clichés: Abcregg-Steiner 6c Cie. AG, Bern

This volume is dedicated to

the more than seventy authors
who have generously taken time out from their busy careers to write for Progress in Experimental Tumor Research, and have made this series what it is.

Editor’s Foreword

It is heartening to learn that the countless hours spent by the authors, the publisher and editorial personnel during the past four years are being rewarded by steady, ever-increasing use of the Progress in Experimental Tumor Research series by cancer researchers throughout the world. It seems expedient at this time to re-evaluate the editorial philosophy of the series with this twofold purpose in mind: 1. to maintain, or better still, to accelerate this gratifying pace of dissemination of useful knowledge, and 2. to render even greater service to the scientific community. Here are our conclusions:

The basic editorial policy of Progress in Experimental Tumor Research remains as valid today as it was in 1960, and we shall continue to publish ‘monographic presentations at short intervals, in fast-moving segments of experimental tumor research, by authors who are active in these areas.’ We shall continue to include ‘the historical background for such work, as well as extrapolations and speculations for which space would not be available in regular journals’.

The selection of subject matter and new authors will henceforth be based on the suggestions of past authors who have contributed to the series. These investigators, numbering more than seventy, are among the best informed individuals in the field of cancer research and their forecasts of trends will be the most valid ones obtainable. As the series progresses, this group of experts will grow and the roots of its advice will thus become increasingly broad and comprehensive.

Since more material than could be published in one book came in for the original Volume V, the present work will be followed within weeks by Volume VI (see Table of Contents, page 308) and from now on, whenever possible, two volumes will appear each year. The added burden imposed by this accelerated publication schedule is cheerfully accepted by the publisher, our editorial assistant, Mrs. Mary Miller, and the editor, in the hope of offering an even more useful service to those who are committed to the important task of cancer research.

F. Homburger, M.D.
Editor
INDEX

Defective Cell Maturation, an Alternative to Accelerated Cell Division as Target for Cancer Therapy

Kai Setälä, Helsinki

I. Introduction 2
II. Review of Rationale for Current Anticancer Principles 3
   A. Current methodologie fundamentals 3
      1. Target of anticancer action in chemotherapy 5
      2. Target of anticancer action in radiotherapy 6
   B. Disadvantages of current strategy 6
III. Reorientation of Cancer Therapy 7
   A. Methodologie fundamentals 7
   B. Foundations for design of anticancer strategy 8
      1. Growth concept 8
      2. Target selection 8
      3. Strain-dependent host factors 10
         a) Significance of mouse strain for tumorigeneous response 10
         b) Significance of mouse strain for morphogenetic response to nonspecific tumor-enhancing noxae 12
         c) Mitotic aberrations in mouse epidermis 14
            aa) Strain dependence of mitotic aberrations under normal conditions 14
            bb) Mitotic aberrations provoked by mere mechanical traumatization of the skin 15
            cc) Mitotic aberrations provoked by nonspecific tumor-enhancing noxae 15
            dd) Mitotic aberrations provoked by (teratogen) sodium pentobarbital 18
IV. Dissimilarities Between Benign and Malignant Epidermal Hyperplasia of Mice as Fundamental Elements of a Model System 24
   A. Characteristics of benign epidermal hyperplasia 26
   B. Characteristics of malignant epidermal hyperplasia 26
   C. Author’s theory of skin carcinogenesis mechanism in mice 30
   D. Corroborative observations by later investigators 32
V. Dissimilarities in Response of Benign and Malignant Epidermal Hyperplasia to the Same External Noxae 33
A. Pilot experiment 33
B. Dissimilarities in response to (teratogen) sodium pentobarbital 37
C. Dissimilarities in response to ionizing radiation 40
VI. Conclusion and Summary: Challenge for a New Strategy in Design of Anticancer Principles 43
Acknowledgments 46
References 46

VIII Index

The Cause and Nature of Cancer

William E. Poel, Pittsburgh, Penna.

I. Introduction 54
II. The Cause of Cancer 54
A. Normal cell + carcinogen = cancer cell 54
B. Cancer: A terminal stage of normal cell proliferation under inadequate homeostatic restraint 56
III. Carcinogenesis Without a Carcinogen 56
A. In vitro: Cell proliferation divorced from homeostatic mechanisms of the host 56
B. In vivo:
1. Cell proliferation unimpaired by contact inhibition 58
2. Cell proliferation uninhibited by hormonal repressors 58
3. Cell proliferation when systemic homeostatic mechanisms are repressed or impaired 61
4. Cell proliferation enhanced by persistent excessive hormonal stimulation 62
C. Direct and indirect carcinogenic pathways 63
IV. Carcinogen-Induced Carcinogenesis 67
A. The indirect pathway in environmental carcinogenesis 67
B. Chemical carcinogenesis 69
1. Pre-malignant changes in skin carcinogenesis 69
2. Malignancy in skin carcinogenesis 71
C. X-rays and viruses as carcinogens 72
D. Carcinogens as carcinolytic agents 75
V. Cytogenetics, Molecular Biology, and Malignancy 76
VI. Discussion: The Resolution of Old Oncological Dilemmas 78
VII. Summary 80
VIII. References 81
Carcinogenesis Through Solid State Surfaces

Fritz Bisghoff and George Bryson, Santa Barbara, Calif.

Introduction 86
Physical Form of the Implant 87
Serendipity 87
Organic polymers 88
Purity of the polymer 91
Metals 92
Asbestos and glass 93
Silicone rubber 95
Confirmatory evidence 95
Water-soluble macromoles 96
Histopathologic Divergencies Resolved 97
Initial (precancerous) period 98

Index IX

Primary carcinogenic focus 98
Critical period for the film in situ 99
Latent quiescent period 100
Metabolism during the latent period 100
Variability of the preparatory period 101
Differences of action of macromoles resulting from their water solubility or water insolubility 101
Histopathologic Mechanisms 102
Carcinogenic role of inhibited inflammatory activity 102
Influence of powdered polymer on the precancerous capsule 102
Effects of chronic irritation and prolonged trauma 104
Role of the unbroken surface 105
Host sensitivity and tissue specificity 106
Malignant transformation of the fibroblast in vitro 107
The sarcoma arising from a fibroblast 108
Etiologic conditions of carcinoma production 109
Cholesterol Solid State Carcinogenesis 110
Nothdurft challenges Hieger’s explanation 110
Bischoff and Bryson interpret Hieger’s results 110
Tissue response to lipids 114
Tissue response to cholesterol powder versus cholesterol crystals 114
Hieger’s suspension compared with an undersaturated solution 115
Resorption differences between rats and mice 116
Correlation of cholesterol crystals with human neoplasms

Certain Theoretical Considerations

Surface resorption

The electro-piezo effect

Free radical theory

Interference with exchange

Influence of sex on local carcinogenesis

Conclusions Concerning Solid State Carcinogenesis

Justification of the concept

The human scene

Disenchanted with the subcutaneous test site

Summary

Acknowledgments

References

Interactions of Hydrocarbon Carcinogens with Viruses and Nucleic Acids in Vivo and in Vitro

Christopher M. Martin, Jersey City, N.J.

I. Introduction

II. In Vivo Interactions

A. Hydrocarbon carcinogens and viruses
   1. Tumor viruses
   2. Non-tumor viruses

III. In Vitro Interactions

A. Hydrocarbon carcinogens and viruses
   1. Mammalian viruses
   2. Bacteriophage

B. Hydrocarbon carcinogens and nucleic acids

C. Possible interpretations of in vivo interactions

IV. Significance of Interactions

A. Theories of carcinogen mutagenesis

X Index

B. Hydrocarbon carcinogens and nucleic acids

C. Possible interpretations of in vivo interactions

III. In Vitro Interactions

A. Hydrocarbon carcinogens and viruses
   1. Mammalian viruses
   2. Bacteriophage

B. Hydrocarbon carcinogens and nucleic acids
   1. Nucleic acids of bacteriophage and of higher species
   2. Nature of interactions: Intercalation theory of Lerman
   3. Properties of carcinogens possibly related to nucleic acid binding

IV. Significance of Interactions

A. Theories of carcinogen mutagenesis
Carcinogenesis of Mammary Gland in Rat

Thomas L. Dao, Buffalo, N.Y.

I. Introduction 158
II. Effects of Pituitary and Steroid Hormones 159
   1. Mammary tumor induction by anterior pituitary hormones 159
   2. Mammary tumor induction by prolonged administration of estrogens 161
   3. Pathophysiological changes in the pituitary gland after prolonged administration of estrogens 163
   4. Pathophysiological changes in the pituitary in the estrogen-deficient rat 165
   5. Relationship of the pituitary gland to estrogen effects on the mammary gland 166
   6. Conclusions 167
III. Effects of Polycyclic Hydrocarbons 168
   1. Route of administration 168
   2. Mammary tumors induced by carcinogenic hydrocarbons 170
   3. The role of steroid hormones in mammary tumor growth 172
   4. The role of pituitary hormones in mammary tumor growth 178
   5. Induction of liver metastases in rats bearing 7,12-DMBA-induced mammary cancer 187
   6. Conclusions 192
IV. Metabolism of Polycyclic Hydrocarbons in the Adrenal and Mammary Glands 195
   1. Toxicity of 3-MC and 7,12-DMBA 195
   2. Factors influencing tissue concentrations of polycyclic hydrocarbons 196
   3. Selective induction of adrenal necrosis by 7,12-DMBA 202
   4. Inhibition of 7,12-DMBA-induced adrenal necrosis by other polycyclic hydrocarbons 205
   5. Conclusions 209

V. Summary 211
VI. Bibliography 212

Index XI
Carcinogen-Induced Tolerance to Homotransplantation

B. A. Rubin, Radnor, Penna.
I. Introduction 218

II. Experimental Studies 219
A. Genetic influences 219
1. Effects of carcinogens on the homograft response in various strains of inbred mice 219
2. Carcinogen treatment of hybrids 223
B. Nongenetic influences on homologous tumor growth 225
C. Genetic specificity of tumors grown in homologous hosts 226
D. Function of route of carcinogen administration 226
E. Transplantation of various tissues 228
1. Tumors (other than 6C3HED) 228
2. Normal tissues 230
3. Parabiosis 232
F. Correlation between carcinogenicity and tumor growth enhancement 233
1. Survey of various carcinogens and their analogs 233
2. Quantitation of tumor growth enhancement 237
3. Competitive interaction between strong and weak carcinogens 241
G. Studies on mechanisms of action 243
1. Effect of carcinogen treatment on the formation of circulating antibodies 243
2. Effect of known immunological inhibitors on the homograft response 245
3. Modification of the carcinogen effect 247
a) Agents which stimulate immune response 247
b) Chemical suppressants of immunity 251
H. Histological changes in lymphoreticular tissues 253
I. Immunological activities of carcinogens 254
1. Reduction of pre-existing tumor immunity 254
2. Duration of carcinogen-induced tolerance 255
3. Significance of the carcinogen treatment schedule 257
4. Nonspecificity of the carcinogen stimulus 258
J. Passive transfer of carcinogen-induced tolerance 260
1. Inoculation of newborn mice 260
2. Parabiosis 261
3. Inoculation of lethally irradiated mice 263
K. Tumor chemotherapy in carcinogen-treated mice 265
III. Discussion: Immunologic Implications of Carcinogenesis 267
IV. Summary 287
V. Acknowledgments 287
VI. References 287
Subject-Index Vol. 1 - Vol. 5 293

Index Vol. 1 - Vol. 5 306

Index Vol. 6-Vol. 8 (in preparation) 308