FOREWORD

The mast cell can be defined as a connective-tissue cell which is capable of elaborating
basophilic, and often metachromatic, granules in its cytoplasm. Satisfied, as we usually are, with one function for each type of cell, it seemed entirely appropriate that the first convincing function for the mast cell should be stated in terms of its known biochemical and morphological attributes. Thirty years ago, Scandinavian workers showed that the basophilic, metachromatic component of the granule is heparin. It seemed then that the ‘Riddle of the Mast Cell’ had been solved.

Today, we are not so sure. The expert in blood-clotting no longer requires heparin to balance his complex equations: some heparins, indeed, are almost devoid of anticoagulant activity. Moreover, we now know that the mast cell forms and stores much more than a mucopolysaccharide with anticoagulant properties. Histamine (all higher vertebrates), 5-hydroxytryptamine (mouse and rat) and proteases are manufactured by the mast cell and are released when the cell is injured.

There can hardly be another cell of which it can be said that the more we come to know about its contents, the less certain we are of its function. One is left with a suspicion that in our researches some fundamental aspect of mast-cell physiology has been overlooked.

The interest of Dr. Fernex in the mast cell began in an unusual and refreshing way. He observed that Africans in the Senegal have many more mast cells in myocardium and skin than are to be found in a comparable group of Europeans. Why? Why should there be an apparent ethnological distribution of the tissue mast cells? Can this be related to any other difference in the two groups? The African is more prone to the formation of keloid in the skin and displays, in general, a hyper-reactivity of the connective tissues not seen in Europeans. He is less prone to develop atherosclerosis; myocardial infarction is extremely rare. He usually has a high content of eosinophils in his blood. Is there anything to link these various observations? Can it be the mast cell?

VI Foreword

In order to establish a base-line for future work, Dr. Fernex began his investigations on the Wistar rat, and almost immediately discovered that tissue mast-cell counts and blood eosinophil levels are both significantly increased in rats infested with helminths. Here, at the outset, is a possible explanation for the observed differences between Africans and Europeans. Turning next to conditions in man, Dr. Fernex first reviews the mastocytoses, local and general, and this prompts him to consider
more fully the role of the mast cell in connective tissues. Here, his knowledge of tropical medicine suggests many ways in which the mast cell may be an index, or even a cause, of the curiously reactive connective tissue in the African.

Thereafter, Dr. Fernex considers a possible relationship between the mast cell and lipid metabolism. Of especial interest to the clinician is his analysis of the mast-cell status of the myocardium in cases of coronary occlusion. Here the evidence strongly suggests that a high mast-cell count in the myocardium is associated with freedom from infarction. And since histamine from mast cells can stimulate a local eosinophilia in man, Dr. Fernex suggests that a high blood eosinophilia may be a pointer in the same direction. These are interesting ideas. The reader may not agree with all that Dr. Fernex has to say. Nevertheless, his mind cannot fail to be stimulated. What more can one ask of any hypothesis?

Dundee, January 1967

James F. Riley

CONTENTS

Foreword by J.F.Riley, Dundee V

Preface X

Acknowledgements XI

First Part: The Mast-Cell System 1

Chapter I: Historical Background to the Mast-Cell Problem3

I. Morphology 3

1. Histological Findings 3
2. Cell and Tissue Cultures 5
4. Blood Basophils and Mast Cells 7

II. Biochemical Properties of the Mast Cells 8

1. Heparin 8
2. Histamine 13
3. Serotonin and Dopamine 16
4. Enzymes and Formation of Kinins and Slow-Reacting Substances 17
Chapter II: Assessment and Physiological Activity of the Mast-Cell System in the Rat 23

1. Sources of Errors in Counting Mast Cells 24
2. Material and Methods 25
3. Preliminary Experiment: Comparison of the Results of Two Separate Counts: Polymyxin and Methylthiouracil Treatment 27
4. Influence of Age and Sex on the Number of Mast Cells 30
5. Influence of Lactation on the Number of Mast Cells 35
6. Influence of Castration on the Number of Mast Cells in Rats 37
7. Influence of Heparin on the Number of Mast Cells 39
8. Influence of Cortisone, Fat and Oil on the Number of Mast Cells in Rats 42
Conclusion 46

Chapter III: Numbers of Mast Cells in Humans 47

1. Age Differences 47
2. Sex Differences 48
3. Own Counts of Mast Cells in Man 49
Conclusions 54

VIII Contents

Chapter IV: Etiology and Pathogenesis of the Hyperplasia of the Mast-Cell System 55

I. Etiology of Hyperplasia of the Mast-Cell System 55

1. Experimental Malaria, Disease of the Reticulo-Endothelial System 55
2. Worm Diseases and Mast Cells in Animal Experiments 58
3. Worm Diseases and Number of Mast Cells in Man 60
4. Carcinogens, Tumors and Mast Cells 62

II. Pathogenesis of Hyperplasia of Mast Cells 63
1. Passive Accumulation of Mast Cells through Inhibition of Secretory Activity 64
2. Hyperplasia of Mast Cells 65
Conclusion 72

Second Part: Clinical Significance of the Mast-Cell System 75

Chapter V: Clinical Picture of Mastocytosis (Urticaria Pigmentosa) 77
I. Symptoms and Laboratory Findings in Urticaria Pigmentosa 77
 1. Dermatological Symptoms 77
 2. Involvement of Inner Organs and Systemic Mastocytosis 78
 3. Laboratory Findings 79

II. Pathogenesis of the Clinical Symptoms and Laboratory Findings 81
 1. Mast-Cell Infiltration 81
 2. Histamine Hyperproduction 81
 3. Hyperheparinemia 82
 Conclusion 83

Chapter VI: Mast Cells, Connective Tissue and Fibroplasia 84

I. Observations from Geographical Pathology 84
II. Significance of Mast Cells in the Metabolism of the Connective Tissue 86
II. Increase of Mast Cells and Fibroplasia in the Clinic and in Animal Experiments 89
 1. Mast-Cell Reticulosis and Fibroplasia 89
 2. Helminthiases, Increase of Mast Cells and Fibroplasia 89
 3. Carcinoid Syndrome and Fibroplasia 95
 4. Liver Cirrhosis, Alcoholism and Fibroplasia 97
 5. Influence of Treatment with Compound 48/80 on the Resistance of Scars 100
 Conclusion 102

Chapter VII: Mast Cells, Lipid Metabolism and Myocardial Infarction 104

I. Geographical Pathology 104
 1. Lipemia and Cholesterolemia 104
 2. Atherosclerosis and Myocardial Infarction 105

II. Relationship between Mast Cells and Lipid Metabolism 106
 1. Influence of Mast-Cell Heparin on Lipid Transport 107
 2. Correlation between Number of Mast Cells and Mast-Cell Activity, Lipoprotein-Lipase and Lipemia 109
 3. Influence of Fat Meals on Mast-Cell Secretion 110
 4. Essential Hyperlipemia 112

Contents IX

III. Mast Cells and their Relationship to Atherosclerosis and to Myocardial Infarction 112

 1. Pathogenesis of Stenosing Atheroma of the Coronary Arteries and its Relationship to the
Mast Cells 112

2. Experimental Atherosclerosis and Decrease of the Number of Mast Cells 114

3. Mast Cells and Atherosclerosis in Man 117

4. Number of Mast Cells, Coronary Sclerosis and Myocardial Infarction in a Series of 672 Autopsies from Malmö 119

Conclusion 128

Chapter VIII: Mast Cells and Eosinophils 129

I. Observations from Geographical Pathology 129

II. Eosinophil Leucocytes and Histamine 130

1. Pathophysiology and Function of the Eosinophils 130

2. Influence of Exogenous Histamine on the Migration of Leucocytes 131

3. Influence of Endogenous Histamine on Eosinophilia 137

III. Eosinophilia after Increase and Stimulation of Mast Cells. Data from the Clinic and from Animal Experiments 140

1. Eosinophilia and Mastocytosis 140

2. Physical Stimuli of the Mast Cells and Eosinophilia 141

3. Biological Stimulation of Mast Cells and Eosinophilia 141

4. Mast-Cell Stimulation in Parasitoses and Eosinophilia 143

5. Tropical Eosinophilia and the Thorn Test 145

6. Toxic Products of Parasites and Eosinophilia 146

IV. Relationship between Permanent Eosinopenia and Decrease of the Number of Mast Cells 147

1. Eosinopenia in the Clinic 147

2. Eosinopenia, Atherosclerosis and Myocardial Infarction in Rats 149

3. Permanent Eosinopenia and Atherosclerosis in the Clinic 151

Conclusion 155

References 160

Index of Names 200

Index of Subjects 209

PREFACE

'Mast cells and blood basophils are dealt with rather summarily in the majority of text-books and manuals of Internal Medicine. This is
unjust as there is hardly any other cell of tissues or blood about which so many biochemical and functional data are available' (Braunsteiner and Thumb, 1963).

In histological and histopathological studies the hematoxylin-eosin staining method is generally used; this fails to stain the mast cells. Many physicians have thus never had occasion to see a mast cell and have been unable to form an opinion on these cells which, nevertheless, are present in varying numbers in the connective tissue of all organs.

The finding of an increased concentration of mast cells in the myocardium and in the skin of Senegalese in comparison to those tissues in Europeans, provided the impulse to study the cause of such a difference, due to ethnological or geographical factors, and to investigate the consequences of an increase or of a decrease of the number of mast cells in the organism.

Part of this work has been carried out in experimental animals, part in man. As other workers have already discussed, this led inevitably to a consideration of the role of the eosinophil, which has some functional link with the mast cell. Correlation between mast-cell number or activity and lipid metabolism, atherosclerosis and connective-tissue repair were also observed. Curiously enough, there is as yet no entirely satisfactory hypothesis to cover the functions of these cells. It is hoped therefore that the present report will add to the store of knowledge by which the 'Riddle of the mast cell' will eventually be solved.

ACKNOWLEDGEMENTS

In compiling this booklet, I wish to thank all those who are partly responsible for its achievement.

In 1957 and 1959-1960 Prof. M. Payet, Dean of the Medical Faculty of Dakar and Prof. M. Armengaud made it possible for me to carry out systematic investigations in their Medical Clinic. So did Prof. P. Mollaret, Paris, who encouraged this work and furnished the control material for the geographic-pathologic investigations. Prof. O. Gsell, Basle constantly facilitated my work and gave me most treasured advice. For ten years Prof. F.C. Roulet has made invaluable suggestions and has always taken a full and gratifying interest throughout the whole of these studies. Prof. R. Geigy gave me the opportunity to carry out experimental work at the Swiss Tropical Institute. During a close collaboration with Dr. P. Suter which lasted one year, this experimental work was completed under the friendly counsel of Dr. R. Keller, Zürich. At that time, my brother Dr. Pierre Fernex was collaborating on the problem of reactive mastocytosis as a consequence of experimental helminthiasis. He continued on the mast-cell line in the Department of Prof. Favarger, Geneva, where he began to investigate the catabolism of orally
given fatty acids under influence of mast-cell stimulation.

I wish to place on record the debt of gratitude which I owe to Dr. P. Dorolle, Permanent Associated Director of World Health Organisation, Geneva, who permitted by means of a grant very valuable and friendly collaboration with Dr. H. Sternby in the Department for Pathology of Prof. Linell, Malmö, on the special problem of mast cells and coronary diseases.

Since I met Dr. J.F.Riley in 1962, all the investigations have been prepared with his advice, and the results pertinently and constructively discussed with him. He also read the manuscript of this booklet, making valuable criticism and corrections. How can I thank him for all this?

Throughout the period I have been indeed fortunate to have had first class technical assistants, Miss D. Imboden, Miss J. Urech, Mrs. B. Fossum-Wennerberg and Mrs. S. Fernex for the experimental and histological work and the haematological studies in Europe and Africa. I also wish to thank Mrs. A. de Weck, who made the English translation of the text, and Mr. R. Posch who drew all the figures.

This work has been supported by following grants:

Janggen-Pöhn Stiftung
Swiss National Fund for Scientifical Research
World Health Organisation, Section for Cardiovascular Diseases.

To Solange
In Memory of Pierre