PROGRESS IN ALLERGY

FORTSCHRITTE DER ALLERGIELEHRE

Vol. VII

Contributors:

Edited by

Paul Kallós, Helsingborg
and
Byron H. Waksman, Boston, Mass.

With 46 figures and 42 tables

BASEL (Switzerland) S. KARGER NEW YORK

All rights, including that of translation into foreign languages, reserved. Photomechanic reproduction (photocopy, microcopy) of this book or part of it without special permission of the publishers is prohibited

©

Copyright 1963 by S. Karger AG., Basel
Printed in Switzerland by Buchdruckerei Friedrich Reinhardt AG., Basel
Clichés: Steiner & Co., Basel

Index

Introduction

By B. H. Waksman, Boston, Mass IX

The Hereditary Human Gamma Globulin (Gm) Groups: Interpretations and Extensions

By H. Fudenberg, San Francisco, Calif 1
Introduction 32
I. Biological Activities of Soluble Antigen-Antibody Complexes 33
A. Anaphylactogenic Properties 33
B. Activity to Induce Allergic Inflammation 36
C. Possible Mechanisms for the Induction of Anaphylactic Reactions by Soluble Antigen-Antibody Complexes 40
1. Role of Complement in the Formation of Active Complexes 40
2. Toxicity of Purified Soluble Complexes 40
3. Dissociation and Recombination of Antigen-Antibody Complexes 43
II. Immunochemical Properties of Soluble Antigen-Antibody Complexes Having Biological Reactivity 46
A. Dependence of the Skin Reactivity on the Composition of the Complex 46
B. Nature of Antigen and Antibody 53
C. Relation between Skin Reactivity and Complement-Fixing Capacity of Soluble Antigen-Antibody Complexes 56

IV Index

D. Affinity of Soluble Antigen-Antibody Complexes for Tissue Constituents 59
E. Possible Structural Changes in Antibody Molecules by the Formation of Skin Reactive Complexes 63
III. Biological Properties of Aggregated -Globulin 68
Organ Specificity with Special Reference to the Lens

By S. P. Halbert and W. Manski, New York, N. Y

I. Introduction 107
II. Definition of Terms 109
III. Instances of Species Specificity vs. Organ Specificity 110
 A. Ocular Lens 110
 1. Immunology of the Lens in Relationship to Phylogeny 111
 2. Ontogeny of Lens Antigens 129
 3. Homologous Anti-Lens Sera 132
 4. Chemistry of the Lens Antigens 137
 3. Potential Auto-Immune Lens Diseases 141
 a) Phacogenic Uveitis 141
 b) Lens Antibodies in Relation to Cataract, Particularly Congenital Cataract 147
 B. Other Normal Body Constituents 151
 1. Blood Components 151
 a) Plasma Proteins 151
 b) Hemoglobin and Erythrocytes 156
 c) Leucocytes 159
 2. Endocrine Glands (Hormones) 160
 3. Heart and Skeletal Muscle 163
 4. Kidney 166
 3. Sperm 168
 6. Brain 169
 7. Enzymes 169
 8. Nuclei and Desoxyribonucleic Acid 171
Induced Synthesis of Histamine, Microcirculatory Regulation and the Mechanism of Action of the Adrenal Glucocorticoid Hormones

By R. W. Schayer, Rahway, N. J

Introduction 187
Evidence that Induced Histamine is a Microcirculatory Regulator . . 188
Difficulties in the Evaluation of Induced Histamine by Conventional Techniques 193
Evaluation of Other Candidates as Regulators of the Autonomous Actions of the Microcirculation 194
A. Plasma Permeability Globulins 195
B. Leucotaxin 196
C. Bradykinin (Including Kallidin and Related Plasma Kinins) 196
Mechanism of Action of the Adrenal Glucocorticoids 199
A. Effect of Glucocorticoids on the Microcirculatory Actions of Exogenous Histamine 199
B. Requirements for a Unified Theory of Glucocorticoid Action 200
C. The Induced Histamine Interpretation of Glucocorticoid Action 201
D. Application of Hypothesis to Interpretation of Microcirculatory Function 202
E. Evaluation of In Vitro Activity of Glucocorticoids 202
F. Other Proposed Mechanisms of Glucocorticoid Action 203
G. Other Actions of the Glucocorticoids 203
H. Possible Nature of Antagonism Between Glucocorticoids and Induced Histamine 204
Conclusion 208
Summary 208
References 208

Immunologic Aspects of the Mycoses

By S. B. Salvin, Hamilton, Montana

Introduction 213
I. Actinomycosis 213
Etiologic Agent: Actinomyces bovis Harz, 1877 213
1. Agglutination 214
2. Other Serologic Tests 215
3. Hypersensitivity 216
4. Immunization 216
5. Pathogenesis 217

II. Nocardiosis 218
Etiologic Agent: Nocardia asteroides (Eppinger) Blanchard, 1806 218
1. Antigenic Relationships 218
2. Adjuvant Effect 219
3. Pathogenicity for Laboratory Animals 219

III. Aspergillosis 220
Etiologic Agent: Aspergillus fumigatus Fresenius, 1850 220
1. Precipitation 220
2. Complement Fixation 221
3. Hypersensitivity 221

VI Index

4. Endotoxin 222
3. Pathogenesis 223

IV. Candidiasis (Moniliasis) 223
Etiologic Agent: Candida albicans (Robin) Berkhout, 1923 223
1. Agglutination 224
2. Precipitation 223
3. Complement Fixation 227
4. Hemagglutination 227
3. Hypersensitivity 227
6. Animal Pathogenicity 229
7. Prophylaxis and Therapy 229
8. Endotoxins 230
9. Antibiotics 230
10. Cortisone 230

V. Cryptococcosis 231
Etiologic Agent: Cryptococcus neoformans (Sanfelice) Vuillemin, 1901 231
1. The Cell Capsule 231
A. Immunologic Properties 231
B. Chemical Nature of Capsule 232
C. “Capsular Reaction” 233
2. Agglutination 234
3. Precipitation 235
Negative Individuals 261
B. Growth and Standardization of Skin-Testing Antigen 262
C. Specificity of Histoplasmin 263
D. Nature of Active Skin-Testing Antigen 264
E. Geographic Distribution of Hypersensitivity to Histoplasmin 266
F. Theoretical Basis of High Reactivity to Histoplasmin 267

2. Serologic Tests 269
A. Complement Fixation 269
B. Precipitation Tests 270
C. Precipitation in Agar 271
D. Agglutination Tests 272
E. Fluorescent Antibody in Serologic Tests 272
F. Serology in Diagnosis and Prognosis 273
G. Cross Reactions 273
H. Hypersensitivity and Serologic Tests 274
I. Purified Fractions 274

3. Acquired Resistance 275

IX. Chromoblastomycosis (Chromomycosis, Verrucous Dermatitis) 278
Etiologic Agents: Hormodendrum Pedrosi Brumpt, 1922; Hormodendrum compactum Carrion, 1935; Hormodendrum dermatitidis (Kano) Conant, 1953; Phialophora verrucosa Thaxter, 1915 278
1. Antigenic Relationship of Strains 278
2. Complement Fixation 279
3. Hypersensitivity 279
4. Animal Inoculation 280

X. Sporotrichosis 281
Etiologic Agent: Sporotrichum Schenckii Matruchot, 1910 281
1. Agglutination 281
2. Complement-Fixation 282
3. Precipitation 283
4. Fluorescent-Antibody Technique 283
5. Other Serologic Tests 284
6. Skin Tests 284
7. Immunization 284

XI. Dermatomycoses 285
Etiologic Agents: Species of Trichophyton (Malmsten), 1845; Microsporum (Gruby), 1943; Epidermophyton (Sabouraud), 1910 285
1. Circulating Antibodies 285
2. Human Susceptibility or Resistance 286
3. Acquired Resistance 287
4. Hypersensitivity 288
Introduction

By Byron H. Waksman

It gives us great pleasure to introduce Volume VII of “Progress in Allergy”. The almost fantastic increase in the volume of basic and applied research occurring in the last decade is reflected in an ever increasing rate of publication in such fields as Immunology, Physiology, Pharmacology and Pathology. To take examples in a single field, the “International Archives of Allergy and Applied Immunology” established in 1950 have increased in a period of 5 years from 4 to 12 issues per year; and the journal “Immunology”, established only 5 years ago, has already found it necessary to increase its publication from 4 to 6 times yearly. The starting of new journals in such special domains as Immunochemistry and Immunopathology is under active consideration. A new review series, “Advances in Immunology”, has made its appearance. The congresses and special symposia dealing with immunologic topics such as antibody formation, tolerance, homotransplantation, leukocytic functions, immunopathology, etc. have become too numerous to list. These changes make it desirable that “Progress in Allergy” be published henceforth on an annual basis.

One of the most fruitful developments of the last few years in Immunology has been the exploitation of gel-diffusion methods (see...
reviews by Ouchterlony in Volumes V and VI of this series) and of immunoelectrophoresis in particular (1,2) for the analysis of antigens and of various normal and pathological sera. At the same time, methods of characterizing and fractionating individual serum proteins, the antibody globulins in particular, have made great strides (3). The application of these new methods to classical problems in Immunology is illustrated by several of the reviews included in the present volume: the analysis of tissue antigens (Halbert), the study of hereditary -globulin groups (Fudenberg), and the attempt to identify alterations in the -globulin molecule, induced by its combination with antigen, responsible for its ability to induce anaphylaxis (Ishizaka). Schayer presents a review of a controversial topic, the existence of histamine in a form other than the easily released histamine, familiar from studies of anaphylaxis. He has assembled a body of data supporting the thesis that histamine plays a regulatory role in the microcirculation and is antagonized by adrenal cortical steroids. With Salvin’s review of immunologic phenomena associated with mycotic infections, we wish to bring up to date an area of infectious disease largely neglected in current immunologic investigations. The most exciting new development in the field of Immunology is the discovery of the role of the thymus early in life, and perhaps in the adult as well, as a source of immunologically competent cells (4-10). The evidence that this organ may act as a major source of lymphocytes and that lymphocytes in turn circulate freely through the other lymphatic tissues (11-17) opens an entire new field of investigation which has barely been touched on in recent symposia and review volumes (18). Malfunction of the thymus may be responsible for some types of hypogammaglobulinemia (see Good, Volume VI of this series) and perhaps for other abnormalities of immune function. A symposium on the thymus, held under the auspices of the National Academy of Sciences, National Research Council at the University of Minnesota, October 29-31, 1962, will be published shortly. The problem of lymphocyte circulation will be discussed by Gowans in a forthcoming volume of “Progress in Allergy”. The growth of the special discipline of Immunopathology, which deals with mechanisms of lesion formation in disease based on immunologic reactions, is illustrated in the publication of a second international symposium volume in this field (19). The concern with other facets of Medicine than the classic triad of asthma, eczema, and
hay fever is particularly striking in this collection of papers. It is noteworthy that no journal devoted to immunopathology exists at present. Articles in this field appear in journals devoted to such diverse disciplines as immunology, physiology, pharmacology, experimental pathology, ultrastructure research, transplantation, and clinical medicine.

References

Waksman, Introduction XI

12. Bierring, F.: Quantitative investigations on the lymphomyeloid system in
thymectomized rats; in Ciba Foundation Symposium on Haemopoiesis, p. 185 (Little Brown, Boston i960).

Author’s address: Dr. B. H. Waksman, Massachusetts General Hospital, Boston, Mass. (USA).