Contents

Foreword ... XI

Origin and Evolution of the Oral Apparatus
E. LLOYD DU BRUL

I. Introduction .. 1
II. Development of the Vertebrate Feeding Device 2
III. Transition to the Mammalian Feeding System 5
IV. Biomechanical Adaptation in Mammals 9
V. Biomechanical Adaptation in the Hominid Head 13
A. Brain .. 18
B. Bipedal Posture 18
 1. A. africanus 19
 2. A. boisei .. 20
C. Oral Mechanics 21
 1. The Skull .. 21
 2. The Jaw Joint 22
References .. 29

Radiography of the Masticatory Apparatus
F. W. MUSAPH

Cephalometric Radiography 32
Body Section Radiography 37
Multi-Planigraphy 41
Panoramic Radiography 45
Principle of Rotational Tomography 45
Enlargement and Reduction Factors 57
Soft Tissue Shadows on Panoramic Radiographs 57

Contents VI

Investigation of Temporomandibular Joint Disorders Using the Orthopantomograph 58
Arthrography of the Temporomandibular Joints 64
Cineradiography 65
Glossary .. 72
Summary ... 73
References .. 74

Neurogenesis of Mastication
Y. KAWAMURA

I. Introduction .. 77
II. Brain Mechanisms of Mastication 78
 A. Cerebral Mechanisms 78
 B. Mechanisms in the Brain Stem 82
 C. Center of Chewing Rhythm 83
 D. Mechanisms in the Trigeminal Motor Nucleus 86
III. Sensory Mechanisms Controlling the Masticatory Movements ... 86
A. Proprioceptive Mechanisms of the Masticatory Muscles .. 87
1. Muscle Spindle Mechanisms in Mandibular Elevators .. 87
2. A Role of Information from the Mandibular Depressors .. 90
3. Golgi Tendon Organ ... 93
B. A Role of Afferent Impulses from the Neck Muscles .. 95
C. Oral and Periodontal Sensory Factors ... 95
D. Pharyngeal Sensory Factors and the Jaw-Closing Reflex ... 98
E. Temporomandibular Joint Sensory Mechanisms .. 99

IV. Neuromuscular Background of Tongue Movements .. 104
A. Hypoglossal Nucleus ... 105
B. Jaw and Tongue Relations ... 108
C. The Lingual-Hypoglossal Reflex ... 110
D. Autogenic Control of Tongue Muscle Activities .. 111

References .. 114

Action of the Muscles of Mastication
E. MLLER

Introduction ... 121
Electromyography ... 122
Physiology .. 122
Application and Technique ... 124
Electrodes, Amplification and Recording ... 124
The Electromyogram at Different Strengths of Contraction ... 127
Clinical Analysis of Chewing ... 128
Recording Procedure ... 132

Contents VII

Quantitative Evaluation ... 132
Statistical Analysis ... 132
Neurophysiology of Chewing ... 133
Movements of the Mandible ... 133
Muscle Activity ... 134
Elevator Muscles ... 136
Lateral Pterygoid Muscles ... 143
Digastric and Mylohyoid Muscles (Depressor Muscles) ... 146
Orbicularis Orbicularis Muscles ... 149
Tooth Contact during Chewing ... 151
Time Course of Chewing Force ... 152
Nervous Control ... 153
Physiology of Mandibular Positions
N. BRIJILL and G. TRYDE

I. Introduction 200
II. Rest Position of the Mandible 201
A. Passive Forces 201
1. Contribution of Muscles 201
2. Contribution of Joints 202
3. Contribution of Donders' Space 204
 Active Forces 205
1. Motor Neuron 205
2. Peripheral Sources of Nerve Impulses 206
 a) Muscle Spindles 206
 b) Mucosal Receptors 209
 c) Joint Receptors 211
 d) Periodontal Receptors 216
3. Central Sources of Nerve Impulses 218
 a) Limbic System 220
 b) Visual Areas of the Brain 221
III. Muscular and Ligamentous Positions of the Mandible ... 223
A. Definitions 223
1. Muscular Path of Closure 223
2. Ligamentous Path of Closure 224
 Instability of the Muscular Path of Closure 226
C. Stability of the Ligamentous Path of Closure 230
D. Obtaining a Ligamentous Position 230
1. Muscular Relaxation 231
2. Learning Muscular Control 231
IV. Conclusions 234
References .. 234
Worldwide dental and oral medicine has undergone tremendous and very rapid development both theoretically and technically during the last two or three decades. The requirements of patients also have been increased qualitatively and quantitatively, and dentists must respond well to such social interest.
The dentist is a specialist in diseases of the dental and stomatognathic system and must have sufficiently developed knowledge about biological specialties of the stomatognathic structures and functions. He must also instruct the citizen as regards healthy oral conditions. Therefore, not only practical clinical problems but also all kinds of fundamental problems concerning the oral and dental systems should be adequately considered in the dental field.

From this philosophical standpoint, dentists must reaffirm the importance of mastication and consider the practical application of recent physiological concepts to the dental practice.

The mouth performs various physiologic functions such as chewing, sucking, tasting, speaking, whistling, swallowing, vomiting, sneezing, and so on. Among these functions of the mouth, mastication of food is one of the most important human functions. The entire process carried out in the oral and pharyngeal cavity while chewing food is called 'mastication' and is essential for the preparation of food for swallowing and digestion. Mastication is also an important action in attaining psychic contentment from feeding and chewing.

Mastication is a complex physiologic phenomenon and is performed by a series of highly coordinated functions involving various parts of the stomatognathic system. Therefore, in spite of voluminous recent works on functions of the elemental structures of the stomatognathic system, systematic studies on mechanisms and effectiveness of mastication as a whole are most necessary.

The aim of this monograph is to introduce the most reliable concept concerning the mechanisms and effectiveness of mastication in a systematic way. In producing a text on mastication from this point of view, a wide variety of basic biological sciences and clinical disciplines is necessarily included to make the volume useful. For this reason this work includes recent concepts of scientists on an international basis from medical, dental, and food science fields in order to present knowledge of all aspects of the subject. These authors outline the study that is necessary to understand the mastication entity and to apply modern scientific concepts on mastication to the daily dental practise.