Progress in Allergy, Vol. 16

Progress in Allergy

Vol. 16

Editors
PAUL KALLÓS, Helsingborg; BYRON H. WAKSMAN, New Haven, Conn. and ALAIN DE Weck, Bern

Contributors

52 figures, 2 colour plates and 31 tables

S. Karger. Basel • München • Paris • London • New York • Sydney . 1972

Progress in Allergy

iii. 1: 400 p., 38 fig., 1939 (first edition)
CCIV+400 p., 38 fig., 1966 (second edition)
Vol. 2: V111+356 p» 50 fig., 37 tab., 1949
Vol. 3: VIII+572 p., 82 fig., 61 tab., 1 cp1., 1952
Vol. 4: 1111+ 520 p., 149 fig., 63 tab., 1954
Vol. 5: XI+508 p., 103 fig., 6 tab., 1958
Vol. 6: XIS+600 p., 78 fig., 38 tab., 1962
Vol. 7: C1I+334 p., 46 fig., 42 tab., 1963
Vol.8: X+261 p., 35 fig., 32 tab., 1964
Vol. 9: 1111+ 308 p., 45 fig., 9 tab., 1965
Vol. 10: XII+292 p., 16 fig., 14 tab., 1967
Vol. 11: XX+184 p., 40 fig., 21 tab., 1967
Vol. 15: XVI+485 p., 31 fig., 41 tab., 1971

S. Karger • Basel • München • Paris • London • New York • Sydney
Contents

Introduction 1
PAUL KALLÓS, Helsingborg

Recent Developments in Immunofluorescence (with colour plates I and II) 9
W. PAGE FAULK, Geneva and W. HIIMANs, Rijswijk

I. Introduction 9
II. Fluorochromes, Antisera, and Conjugates 10
A. Fluorochromes 10
B. Antisera 11
C. Conjugates 13
III. Light Source and Filters 18
A. Light Source 18
B. Filters 20
IV. Illuminating Systems 27
A. Dark Field 27
B. Epiillumination 28
V. Quantitative Immunofluorescence 30
Acknowledgements 32
Addendum 32
References 32

Cell-Cell Interactions in Antibody Production 40
H.N. CLAMAN, Denver, Col. and D.E. MosIER, Boston, Mass.

Introduction 41
I. In vivo Cell-Cell Interactions 42
A. General Background. Antibody Synthesis and the Role of the Thymus and of Phagocytic Cells 42
B. Early Experiments Showing a Requirement for More than One Cell in vivo 43
C. Characteristics of Co-Operating Thymus-Derived Cells 45
 1. Origin and Distribution 45
 2. Identification 46
 3. Reactivity 46
 4. Specificity 47
D. Characteristics of Co-Operating Marrow-Derived Cells 48
 1. Origin, Distribution and Identification 48
 2. Reactivity 48
 3. Specificity 49
 4. Co-Operating Cells in the Rabbit of Marrow Origin 49
E. The Carrier Effect 50
F. Synthesis of the Carrier Effect and the Two-Cell System 51
G. Role of the Macrophage in vivo 54
I1. In vitro Cell-Cell Interactions 56
 A. Early in vitro Experiments Suggesting Cell-Cell Co-Operation 56
 1. Antigen Processing 56
 2. Direct Macrophage-Lymphocyte Interaction 56
 3. Thymus Cell Co-Operation in vitro 56
 B. Techniques for Cell Culture 57
 1. Special Requirements 57
 2. Advantages and Limitations 58
C. Characteristics of Co-Operating Adherent Cells 58
 1. Requirement for Adherent Cells 59
 2. Are Adherent Cells Required for All Antigens ? 59
 3. Properties of Adherent Cells 60
 4. Adherent Cell Function 60
D. Characteristic of Co-Operating Non-Adherent Cells 61
 1. Requirement for Two Non-Adherent Co-Operating Cells 61
 2. Co-Operation of Non-Adherent Cell-Equivalent Populations 62
 3. Properties of Co-Operating Non-Adherent Cells 62
 a) Morphology 62
 b) Density 62
 c) Radiation Sensitivity 63
 d) Thymus Derivation 63
 e) Precursor Cells 64
 f) Site of Tolerance Induction 64
 4. Function of Co-Operating Non-Adherent Cells 64
E. Adherent-Non-Adherent Cell Co-Operation in vitro 64
F. Summary of the Evidence for Co-Operation of Three Cell Types in vitro 65
Structure and Function of Immunoglobulin A

T.B. Tomnsci, Buffalo, N.Y. and H.M. GREY, Denver, Col.

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>Introduction 83</td>
</tr>
<tr>
<td>II.</td>
<td>Isolation 84</td>
</tr>
<tr>
<td>III.</td>
<td>Structure of Serum IgA 86</td>
</tr>
<tr>
<td>A.</td>
<td>Physico-Chemical Properties 86</td>
</tr>
<tr>
<td>B.</td>
<td>General Chemical Properties 90</td>
</tr>
<tr>
<td>C.</td>
<td>IgA Polymers 91</td>
</tr>
<tr>
<td>D.</td>
<td>Subunit Structure 93</td>
</tr>
<tr>
<td>E.</td>
<td>Proteolytic Fragments 98</td>
</tr>
<tr>
<td>F.</td>
<td>Primary Structure 100</td>
</tr>
<tr>
<td>IV.</td>
<td>Immunological Properties 104</td>
</tr>
<tr>
<td>V.</td>
<td>Human Secretory Immunoglobulins 106</td>
</tr>
<tr>
<td>A.</td>
<td>Quantitation of Immunoglobulins in Secretions 107</td>
</tr>
<tr>
<td>B.</td>
<td>Isolation of Secretory IgA and Free Secretory Component 110</td>
</tr>
<tr>
<td>C.</td>
<td>Chemical Properties of Secretory Immunoglobulins 112</td>
</tr>
<tr>
<td>1.</td>
<td>Secretory IgA 112</td>
</tr>
<tr>
<td>2.</td>
<td>J Chain 114</td>
</tr>
<tr>
<td>3.</td>
<td>Mode of Linkage of Secretory Component 117</td>
</tr>
<tr>
<td>4.</td>
<td>Proteolysis of Secretory IgA 118</td>
</tr>
<tr>
<td>5.</td>
<td>Immunoglobulins other than IgA in Secretions 120</td>
</tr>
<tr>
<td>D.</td>
<td>Chemical Properties of Secretory Component 121</td>
</tr>
<tr>
<td>1.</td>
<td>In vitro Binding of SC to Serum Proteins 122</td>
</tr>
<tr>
<td>E.</td>
<td>Immunological Reactions of Secretory IgA and Secretory Component 124</td>
</tr>
<tr>
<td>F.</td>
<td>Synthesis and Transport of Secretory Immunoglobulins 126</td>
</tr>
<tr>
<td>1.</td>
<td>IgA 126</td>
</tr>
<tr>
<td>2.</td>
<td>IgM 130</td>
</tr>
<tr>
<td>3.</td>
<td>IgE 130</td>
</tr>
<tr>
<td>4.</td>
<td>IgG 130</td>
</tr>
<tr>
<td>5.</td>
<td>Specificity of Transport 132</td>
</tr>
<tr>
<td>G.</td>
<td>Conformation of Secretory IgA 133</td>
</tr>
<tr>
<td>VI.</td>
<td>Serum and Secretory IgA in Animals 134</td>
</tr>
<tr>
<td>A.</td>
<td>Criteria for Identification of IgA 134</td>
</tr>
<tr>
<td>B.</td>
<td>Evidence for IgA in Various Animal Sera 136</td>
</tr>
<tr>
<td>VII.</td>
<td>Metabolism of IgA 140</td>
</tr>
</tbody>
</table>
A. Synthesis of IgA 140
1. Ontogeny of the IgA System 146
2. Role of Central Lymphoid Organs 148
3. Role of Antigenic-Stimulation 149
B. Catabolism of IgA 150

VIII. Biological Properties of IgA 152
A. Antibody Activity in Serum and Secretory IgA 152
B. The Kinetics of the IgA Antibody Response. Immunological Memory in the IgA System 153
C. Combining Amnity and Valence 155

Contents VIII

D. Mechanism of Biological Action of IgA Antibodies 158
1. Viral Neutralization 158
2. Complement Fixation 158
3. Opsonization 159
4. Blocking Activity 159
5. Limiting Absorption of Nonviable Antigens 159
E. Functional Role of IgA in Protection Against Infection and Implications in Immunization Against Certain Human Diseases 160
1. Viral Infections 160
2. Immunization against Viruses 161
3. Bacterial Infections 167
a) Role of Colostral Antibodies 170
4. Eye Infections 171
IX. Diseases of the IgA System 174
A. Elevation of Serum and Secretory IgA 174
B. Alpha Chain Disease 175
C. Deficiencies of IgA 177
1. Congenital and Acquired Hypogammaglobulinemia 177
2. Selective Deficiency of IgA 178
a) Association with Hereditary Telangiectasia and Relation to IgE Deficiency 179
b) Association with 'Autoimmune' Disorders 180
c) Association with Malabsorption Syndrome 182
d) Association with Malignancy 182
e) Inheritance of Selective IgA Deficiency 182
D. Antibodies to IgA in Human Sera 183
X. References 185

Antigens of the Thymus 214
1. Introduction 215
11. Antigens of the Murine Thymus 216
A. Alloantigens 216
1. H-2 Antigens 216
2. Non-H-2 Histocompatibility Antigens 218
3. The TL Antigens 219
4. O-Antigens 221
5. Ly Antigens 222
6. Other Alloantigens 223
B. Antigens Detected by Heterologous Sera 224
1. Normal Heterologous Sera 224
2. Heterologous Anti-Lymphocyte and Anti-Thymus Sera 224
a) Species-Specific Antigens 225
b) Strain-Specific Antigens 225
3. Immunoglobulins on the Cell-Surface of Lymphocytes 228
C. Genetic Aspects of Thymic Antigens 229
D. The Topographical Arrangement of Antigens on the Surface of Thymus Cells 231
E. Biochemical Characterization of Thymic Antigens 233
1. Solubilization of Cellular Antigens 233
2. Carbohydrates as Antigenic Determinants on Lymphoid Cells 235
III. Thymus Antigens in the Rat 237
IV. Antigens of the Human Thymus 240
V. Antigens of the Chicken Thymus 242
VI. The Phenotypic Expression of Thymic Antigens 243
A. The Inductive Microenvironment of the Thymus 243
1. Loss of Hemopoietic Potential 244
2. Acquisition of Capacity to ‘Home’ to Lymph Nodes 245
3. Acquisition of Thymus-Distinctive Antigens 245
4. Antigenic Differentiation of T Lymphocytes 246
B. Embryonic Differentiation of Thymic Antigens 249
C. The Effect of Hormones on Thymic Antigens 250
D. The Effect of Antibody on Thymic Antigens 252
E. The Effect of Tumor Growth on Thymic Antigens 253
VII. Antigenic Differences Between T and B Lymphocytes 254
A. Antigenic Markers for Thymus-Derived Lymphocytes 254
1. The 8-Antigens as Markers for T Lymphocytes 254
2. Ly Antigens as Markers for T Lymphocytes 258
B. Antigenic Markers for B Lymphocytes 259
1. Immunoglobulin Determinants 259
2. Bone Marrow-Derived Lymphocyte Antigen 259
3. PC-1 Antigen 259
VIII. Autoimmune Reactions with Thymic Antigens 260
A. Autoantibodies to Thymus Cells 260
B. Autoimmune Thymitis 263
1. Myasthenia gravis 263
2. Experimental Autoimmune Thymitis 266
IX. Thymus-Like Antigens on Lymphocytic Leukemia Cells 268
X. Lymphocyte Antigens as Functional Cellular Components 271
A. Antigen Recognition Sites 273
B. Receptors for Antigen-Antibody-Complement Complexes 273
C. Signals Regulating the Exit of Cells from the Thymus 274
D. Recognition Sites Directing the Migration of Lymphocytes 274
E. Regulators for the Secretion of Lymphokines 275
F. Hormone Receptors 275
XI. Concluding Remarks 275
XII. References 276
Note added in proof 299

Contents X

Cellular Hypersensitivity and Immunity. Inhibition of Macrophage
Migration and the Lymphocyte Mediators 300

Introduction 302
II. Inhibition of Migration of Cells from Tissue Explants 304
III. Capillary Tube Migration 307
A. Sensitivity to PPD 308
B. Specificity of Inhibition of Migration by Antigen 311
C. Amount of Inhibition of Migration in Relationship to Dose of Antigen 313
D. Inhibition of Migration when Animals Produce only Antibody 314
E. Passive Sensitization of Cells by Antibody 315
F. Inhibition of Migration by Antigen-Antibody Complexes 318
G. The Role of Complement in Inhibition of Migration 319
H. Effect of Metabolic Inhibitors 321
I. The Sensitive Cell in Inhibition of Migration 323
J. The Treatment or Cells with Enzymes 328
IV. 'The Mediators' 331
A. 11F — Migration Inhibitory Factor 332
1. Properties of Guinea Pig MIF 333
 a) Dialysis 333
 b) Heat stability 333
 c) Dilution 333
 d) Antigen requirement for production 334
2. Effect of Suppression of Protein Synthesis 334
3. Kinetics of Production 334
4. Purification and Characterization of MIF 335
 a) Sephadex gel and DEAF chromatography 335
 b) Purification by acrylamide gel discontinuous electrophoresis 339
 c) Characterization of MIF by enzymatic treatment 340
 d) Studies using cesium chloride gradient ultracentrifugation 342
5. Antigen Requirement for MIF Activity 343
6. Requirement for Macrophages in MIF Production 347
B. Chemotactic Factor 347
 1. Sucrose Density Gradient Analysis of Chemotactic Factor 348
 2. Separation from MIF on Discontinuous Acrylamide Gel Electrophoresis 349
 3. Chemotactic Factor from Neutrophils 350
C. Macrophage Aggregation Factor 351
D. Macrophage Activity Factor 352
 1. Effect of MIF-Rich Fractions on Macrophage Adherence 355
 2. Studies on Phagocytoses 356
 3. Protein Synthesis 357
 4. Time-Lapse Cinemicrography 357
 5. Migration Inhibition 359
 6. Glucose Oxidation 359

Contents XI

Contents XI
E. Cytotoxic Factors 364
 1. Lymphotoxin 368
 2. Mouse Lymphotoxin 368
 3. Human Lymphotoxin 369
 4. Relationship of Lymphotoxin to MIF and Chemotactic Factor 371
5. Lymphocyte Toxicity and Lymphotoxin 375
F. Factors Influencing Cellular Proliferation 376
 1. Cloning Inhibitory Factor 376
 2. Proliferation Inhibitory Factor 377
G. Skin Reactive Factors 378
1. Factors Produced by Sensitive Lymphocytes in Response to Antigen 378
2. Mitogen-Induced Skin Reactive Factor 383
H. Mitogenic or Blastogenic Factors 386
I. Product of Antigenic Recognition — A Leukotactic Factor 390
J. Production of Mediators in Cultures of Established Human Lymphocyte Lines 390
K. Interferon 392
L. Antibody Production 394
M. Lymph Node Permeability Factor (LNPF) 396
V. Studies on Aspects of Cellular Hypersensitivity Using the Migration Inhibition Assay 398
A. Detection of Cellular Hypersensitivity in Animals with Negative Skin Tests 398
B. Tolerance 399
C. Desensitization 399
D. Transfer of Delayed Hypersensitivity in vitro 401
1. Transfer with RNA Extracts 401
2. Transfer with Cell Lysates 402
3. Transfer Factor 403
E. Detection of Cellular Hypersensitivity in Various Tissues 404
F. Studies on Experimental Pathology Using the Migration Inhibition System 405
G. Cellular Sensitivity to Tumors 406
VI. Clinical Studies of Cellular Reactions Using Migration Inhibition Techniques 407
A. Effects of Antigen on Human Leukocyte Migration 407
B. MIF Production by Human Lymphocytes 412
C. Characteristics of Human MIF 415
D. Dissociation of Skin Reactivity and Lymphocyte Functions 416
VII. A View into the Aleph 420
References 427

Immunologic Mechanisms of Platelet Damage 450
A.G. OSLER and R.P. SIRAGANIAN, New York, N.Y.
I. Introduction 451
II. Platelet Interaction with Specific Antibody and Complement 452
a) Heterologous Antibody 452
b) Homologous and Autologous Antibody 454

Contents XII

III. Platelet Responses to Unrelated Incipient Immune Aggregates 455
a) A Typical Experiment 456
b) Essential Role of Magnesium 458
c) Nature of the Immune Aggregate 461
d) Does Antibody-Binding to Rabbit Platelets Precede the Allergic Release of Histamine? 462

e) Is Platelet Agglutination Essential? 464

f) Nature of the Plasma Requirement 466
g) Participation of the Complement C3 Shunt Pathway 469

h) The Fate of the Platelet in the Allergic Response 472

IV. Platelet Histamine Release Associated with Phagocytosis of Preformed Immune Aggregates 475

V. Endotoxin-Associated Platelet Damage 475

VI. Basophil-Dependent Histamine Release from Rabbit Platelets 477

a) Demonstration 477

b) Implication of the Basophil 480

c) Nature of the Antibody 482

d) Release of an Intermediate from the Basophil 483

e) Characterization of the Intermediate 484

f) Mechanism of Action on the Platelets 486

VII. Role of Platelets in Immunologically-Mediated Tissue Damage 487

a) The Role of the Platelet in the Shwartzman Reaction 487

b) Platelet Damage in Serum Sickness 488

c) Do Platelets Participate in Vasculitis of the Arthus Type? 489

Summary 490

References 490