Progress in Neurological Surgery

Progress in
Neurological Surgery

Vol. 5

Editors
H. Krayenbühl, Zürich; P. E. Maspes, Milan; W. H. Sweet, Boston, Mass.

Assistant Editors
P. Paoloetti, Pavia; Ch. E. Poletti, Boston, Mass.

List of Contributors

116 figures and 22 tables

S. Karger• Basel • München • Paris• London•New York•Sydney•1973

Progress in Neurological Surgery

Advisory Board

ISBN 3-8055-0410-1

ISBN 3-8055-0412-8

ISBN 3-8055-0413-6

Contents

Preface XIII

Stereotaxic Surgery for Treatment of Parkinson’s Syndrome 1
T. Riechert, Freiburg i. Br.

Clinical Findings 2
General Considerations 2
Major Symptoms 3
Psychological Symptoms 4
Additional Investigations 5
Operative Treatment 8
Stereotaxic Devices 8
The Target Apparatus of Spiegel and Wycis 10
The Stereotaxic Apparatus of Riechert and Wolff (1st Model) and of Riechert and Mundinger (2nd Model) 11
The Basal Ring 13
The Target Bow 14
The Electrode Holder 15
The Model Ring 17
The Trepanation Marking Ring 17
X-Ray Equipment 18
The Localization of the Target Point and Contrast Filling of the Cerebral Ventricles 19
Methods of Lesioning 23
Chemical Necrosis 24
Mechanical Lesions 24
Electronecrosis 24
Cryonecrosis 26
Ultrasound Lesions 26
Radioactive Necrosis 27
Inductive Heating 27

Contents VI

Indications for Surgery 31
Age and Operation 31
Bilateral Operation 32
Operation for Recurrence 33
Target Structures: Pallidum and Thalamus. The Effects of Their Stimulation and Somatotopic Arrangement 34
Pallidoansotomy 35
Results of Stimulation 37
Ventrolateral Thalamotomy 40
Results of Stimulation 41
Operative Results, Including Long-Term Observations 42
Operative Results with Pallidotomy and Thalamotomy 44
Results of Bilateral Operation 44
Mortality and Complications 50
Psychic Changes 55
Subthalamotomy 57
Target Reliability, Results of Stimulation and Clinical Effects on the Basis of Autoptic Findings 59
Results of Stimulation 60
Operation Record 62
References 69

Stereotactic Surgery for Parkinsonism. Microelectrode Recording, Stimulation, and Oriented Sections with a Leucotome 79
C. Bertrand, S. N. Martinez, J. Hardy, P. Molina-Negro and F. Velasco, Montreal

Introduction 80
Technique 83
Fixation 83
Trepanation 83
Ventriculography 84
Aiming the Electrodes 85
Section with the Leucotome 86
Selection of Cases 87
Systemic and Autonomic Symptoms 88
Mental and Psychic Alterations 89
Selection According to the Patient’s Symptoms and Their Duration 89
Selection According to the Topography of the Symptoms 91
Target 91
Microelectrode Recording 93
Monopolar Stimulation 98
Previous Experiences 98
Recent Analysis 99
Results 104
Unilateral Lesions 104

Contents VII

Bilateral Sections 106
Long-Term Results 106
Complications 107
Hemorrhages 107
Mental and Psychic Alterations 108
Epileptiform Seizures 108
Hemiplegia 108
Dysarthria 108
Hemiballism 109
Paraesthesiae 109
Hypotonia and Imbalance 110
References 110

Stereotaxic Operations for Behavior Disorders 113
H. Narabayashi, Tokyo

Introduction 113
The Stereotaxic Approach on Subcortical Frontal White Matter 114
Dorsomedial or Anterior Thalamotomy 116
Surgery on the Limbic System 120
Cingulectomy and Fornicotomy 120
Amygdalotomy 122
Hypothalamotomy 140
Comment 143
Summary of Development of Stereotaxy on the Thalamo-Frontal System 144
Summary of Development of Stereotaxy on the limbic System 145
Amygdaloid and Hippocampal Complex 147
Cryogenic Technique of Thalamic Surgery for Parkinsonism and Other Involuntary Movement Disorders 159
I. S. Cooper, Bronx, N. Y.

Introduction 159
The Thalamus as Surgical Target 160
Ventricular Landmarks 163
Extreme Cold as a Physiologic and Surgical Tool 166
A Complete System for Cryogenic Surgery 167
Pathology of the Cryogenic Thalamic Lesion 171
Pathological Findings 171
The Procedure 176

Contents VIII

Roentgeno-Anatomic Aiming 176
Clinico-Physiologic Confirmation of the Surgical Target 180
Incremental Creation of the Cryogenic Lesion 180
The Reversible Buffer Zone 182
Clinical Results 183
Preoperative Status 183
Postoperative Status 184
Recurrence of Symptoms 186
Surgical Complications 186
References 186

Electrophysiological Recordings in Stereotaxic Thalamotomy for Parkinsonism 189
G. Guiot, P. Derome, G. Arfel, and S. Walter, Suresnes-Paris

Introduction 189
Historical Background 190
Anatomy 191
The Thalamic Area 192
Components 192
Discussion 194
Campotomy 198
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delineation of the Chosen Target</td>
<td>199</td>
</tr>
<tr>
<td>Radiologic Studies of the Target Structure</td>
<td>201</td>
</tr>
<tr>
<td>Electrophysiology</td>
<td>203</td>
</tr>
<tr>
<td>Introduction</td>
<td>203</td>
</tr>
<tr>
<td>Trajectory</td>
<td>204</td>
</tr>
<tr>
<td>Technique of Recordings</td>
<td>205</td>
</tr>
<tr>
<td>Electrophysiological Characteristics of the Ventral Nuclei</td>
<td>208</td>
</tr>
<tr>
<td>Electrophysiological Delineation of the Target</td>
<td>209</td>
</tr>
<tr>
<td>Posterior Limit</td>
<td>209</td>
</tr>
<tr>
<td>Anterior Limit</td>
<td>214</td>
</tr>
<tr>
<td>Laterality</td>
<td>215</td>
</tr>
<tr>
<td>Somatotopy of the VP Nucleus</td>
<td>215</td>
</tr>
<tr>
<td>Location of Capsular Penetration</td>
<td>216</td>
</tr>
<tr>
<td>Conclusion</td>
<td>218</td>
</tr>
<tr>
<td>References</td>
<td>219</td>
</tr>
</tbody>
</table>

**Surgery for Epilepsy**

D. Jinn ai and J. Mukawa, Osaka

Introduction

History of Surgical Treatment for Epilepsy

Surgical Treatment in Modern Times

**Contents**

Indirect Approaches

Procedures Based on Endocrinological Hypotheses

Peripheral Surgery

Surgery Based on the Auto-Intoxicating Theory

Vascular Procedures

Direct Approaches

Cortical Excision

Ablation of Area 6 of Brodmann

Temporal Lobectomy

Hemispherectomy

Undercutting or Leucotomy (Lobotomy)

Drainage and Ventriculostomy

Cranioplasty

Durai Graft

Pneumoencephalography

Stereotaxic Surgery

Local Cortical Hypothermia and Application of GABA and
its Derivatives 230
Surgery for Epileptogenic Expanding Lesions 231
Incidence 231
Incidence According to Location in the Brain 232
Infratentorial Tumors 232
Supratentorial Tumors 232
Seizure Incidence According to the Nature of the Lesion 232
Gliomas 232
Meningiomas 233
Subdural Hematomas 233
Brain Abscess 233
Results of Extirpation 234
Meningiomas (Meningeal Fibroblastoma) 234
Astrocytomas 234
Glioblastoma multiforme 235
Brain Abscess 235
Discussion 236
Focal Cortical Excision 237
Technique of Excision of Epileptogenic Foci 237
Preparation of the Patient 238
Analgesia and Anesthesia 238
Craniotomy 238
Electrical Stimulation 238
Electrocorticography 239
Cortical Excision 239
Indispensable Cortex 240
Postoperative Care 240
Results of Cortical Excision 241
Discussion 246

Contents X

Temporal Lobectomy 247
Introduction 247
Indications 248
Selection of the Surgical Procedures 249
Technique of Temporal Lobectomy 250
Discussion Concerning the Necessity of Additional Insulectomy 254
Pathology 255
Results 258
Complications 260
Discussion 262
Stereotaxic Surgery for Epilepsy 262
Introduction 262
Stereotaxic Surgery for Neocortical Seizures 263
Subcorticogenic Seizures 263
Pallidoansotomy and Pallidoamygdalotomy 263
 Interruption of Preferential Pathways for Convulsive Impulses 265
Lenticulotomy 266
Putamectomy 267
Forel-H-Tomy 267
Stereotaxic Surgery for Temporal Lobe Epilepsy 271
Fornicotomy 272
Upper Mesencephalic Reticulotomy 272
Hypothalamotomy 273
Amygdalotomy 273
Dorsomedial Thalamotomy 274
Other Approaches 275
Discussion 275
Discussion and Conclusions 277
References 280

Stereotaxic Approach to Epilepsy. Methodology of
Anatomo-Functional Stereotaxic Investigations 297
J. Talairach and J. Bancaud, Paris

General Methodology 298
Procedure for Preoperative Investigation 298
Procedure for Standard Electro corticographic Investigation 299
Methods of Stereotaxic Investigation 303
Principles of Anatomic Stereotaxic Investigation 306
Essential Conditions for Investigation 306
Principles of Stereotaxic Localization 306
Direct Stereotaxic Localization of Cerebral Structures 310
Indirect Stereotaxic Localization of Cerebral Structures 314
Application of Stereotaxic Localization Procedures to the Implantation
of Intracranial Electrodes 321

Contents XI

Principles of Functional Stereotaxic Investigations (SEEG) 330
Choice of Structures to Be Investigated 331
Acute and Chronic Investigations 332
The SEEG Investigation 332
Techniques and Methodology 332
Oscillographic Recordings 333
EEG Recording 334
Peripheral Stimulation 334
Central Stimulation 335
Topographic Delimitation of the Structures Studied 336
Characterization of One or More Epileptogenic Zones 337
Anatomo-Electro-Clinical Investigations 337
Electrophysiologic Investigations 338
Stereotaxic Investigation and Surgical Treatment of Epilepsy 339
Approach to Surgery (Excision) 339
Stereotaxic Surgery 347
Operative Results 349
Conclusion 352
References 353

The Importance of Neurophysiological Tests for the Localization of the Targets in Stereotaxic Neurosurgery 355
F. Marossero, Milano

Introduction 355
Surgery for Parkinson’s Disease 357
Localization of Stereotaxic Targets 358
Electrical Stimulation of the Target and Surrounding Structures 361
Motor Responses to Electrical Stimulation of the Thalamus and Adjacent Structures 361
Subjective Sensory Responses to Electrical Stimulation of Nucleus VPL and VPM 365
Evoked Cortical Potentials from Thalamic Stimulation 368
Depth Electroencephalography (SEEG) and Routine EEG during Stereotaxic Procedures 372
Recording of Thalamic Unit Activity with Microelectrode Techniques 372
Modifications of Spontaneous Tremor 373
Other Tests for Target Localization 378
References 380

The Place of L-Dopa in the Treatment of Parkinson's Disease 387
J. Siegfried, Zürich

History of Classic Medical and Surgical Treatment 387
History of L-Dopa Therapy 389
Contents XII

Biochemical Aspects 390
Clinical Experiences with L-Dopa over a 10-Year Period 391
Clinical Experiences with L-Dopa and a Decarboxylase Inhibitor 392
Treatment Failures with L-Dopa 393
Side-Effects with L-Dopa 394
Abnormal Involuntary Movements 394
Orthostatic Hypotension 395
Behavior and Mentation Changes 395
Other Side Effects 396
Side-Effects of L-Dopa in Association with a Decarboxylase Inhibitor 397
Proposal for Actual Treatment of Parkinson's Disease 398
References 399

Authors’ Index 406
Subject Index 418

Editorial Preface

The delay in appearance of this 5th volume is a source of chagrin to
the editors. Most of the authors of the chapters herein submitted their
manuscripts many months ago; Drs. Krayenbühl, Maspes and Sweet
tender their humble apologies to the punctual essayists. Fortunately the
sections on neurosurgical treatment of involuntary movements and of epilepsy
were written at a time at which the subject had reached a relative
plateau from which it has not moved in a major way. Although there are
many rapidly changing areas in neurosurgery where knowledge is explosively
expanding our diagnostic and therapeutic horizons, this group of
chapters is not obsolescent by the time the reader will receive it.
This volume presents in one convenient place a comprehensive exposition
and summary of the advantages and risks attendant upon the
procedures worked out by each of the several active schools of stereotactic
neurosurgery in the fields under discussion. We are thankful to the major
exponents of each school for their willingness to undertake the arduous
collation and evaluation of their efforts over the past quarter century. The
product should enable the neurosurgeon to pick and choose from each
school’s techniques and knowledge those features most convincing to him.
We know of no comparable presentation.
It is noteworthy that 7 nations are represented in the 9 chapters in the
volume, and that the 2 nations each providing two chapters are France
and Japan. Indeed when we recognize that the Canadian group of Bertrand
and colleagues speak French as their primary language we become even more aware of the evidence of the eminence of the French culture in stereotactic techniques vis-à-vis the brain. If there was ever a monopoly on innovation and superior performance in neurosurgery among those whose native tongue is English, such a degree of dominance of that or any other national grouping is gone. There never was anything to prevent literally anyone from having a good idea. It is now apparent that favorable conditions are present in many cultures to permit such ideas from coming to fruition. It is equally apparent that no one can stay abreast of the field of neurosurgery if he does not keep himself cognizant of ‘what’s new’ from many quarters of the globe. It remains an objective of ‘Progress in Neurological Surgery’ to facilitate this global recognition of merit in our field.