Progress in Neurological Surgery

Progress in Neurological Surgery

Vol. 5

Editors
H. Krayenbühl, Zürich; P. E. Maspes, Milan; W. H. Sweet, Boston, Mass.

Assistant Editors
P. Paoletti, Pavia; Ch. E. Poletti, Boston, Mass.

List of Contributors

116 figures and 22 tables

S. Karger• Basel • München • Paris• London•New York•Sydney•1973

Progress in Neurological Surgery

Advisory Board

ISBN 3-8055-0410-1

ISBN 3-8055-0412-8

ISBN 3-8055-0413-6

Contents

Preface XIII

Stereotaxic Surgery for Treatment of Parkinson’s Syndrome 1
T. Riechert, Freiburg i. Br.

Clinical Findings 2
General Considerations 2
Major Symptoms 3
Psychological Symptoms 4
Additional Investigations 5
Operative Treatment 8
Stereotaxic Devices 8
The Target Apparatus of Spiegel and Wycis 10
The Stereotaxic Apparatus of Riechert and Wolff (1st Model)
and of Riechert and Mundinger (2nd Model) 11
The Basal Ring 13
The Target Bow 14
The Electrode Holder 15
The Model Ring 17
The Trepanation Marking Ring 17
X-Ray Equipment 18
The Localization of the Target Point and Contrast Filling of the Cerebral
Ventricles 19
Methods of Lesioning 23
Chemical Necrosis 24
Mechanical Lesions 24
Electronecrosis 24
Cryonecrosis 26
Ultrasound Lesions 26
Radioactive Necrosis 27
Inductive Heating 27

Contents VI

Indications for Surgery 31
Age and Operation 31
Bilateral Operation 32
Operation for Recurrence 33
Target Structures: Pallidum and Thalamus. The Effects of Their Stimulation and Somatotopic Arrangement 34
Pallidoansotomy 35
Results of Stimulation 37
Ventrolateral Thalamotomy 40
Results of Stimulation 41
Operative Results, Including Long-Term Observations 42
Operative Results with Pallidotomy and Thalamotomy 44
Results of Bilateral Operation 44
Mortality and Complications 50
Psychic Changes 55
Subthalamotomy 57
Target Reliability, Results of Stimulation and Clinical Effects on the Basis of Autoptic Findings 59
Results of Stimulation 60
Operation Record 62
References 69

Stereotactic Surgery for Parkinsonism. Microelectrode Recording, Stimulation, and Oriented Sections with a Leucotome 79
C. Bertrand, S. N. Martinez, J. Hardy, P. Molina-Negro and F. Velasco, Montreal

Introduction 80
Technique 83
Fixation 83
Trepanation 83
Ventriculography 84
Aiming the Electrodes 85
Section with the Leucotome 86
Cryogenic Technique of Thalamic Surgery for Parkinsonism and Other Involuntary Movement Disorders 159
I. S. Cooper, Bronx, N. Y.

Introduction 159
The Thalamus as Surgical Target 160
Ventricular Landmarks 163
Extreme Cold as a Physiologic and Surgical Tool 166
A Complete System for Cryogenic Surgery 167
Pathology of the Cryogenic Thalamic Lesion 171
Pathological Findings 171
The Procedure 176

Contents VIII
Roentgeno-Anatomic Aiming 176
Clinico-Physiologic Confirmation of the Surgical Target 180
Incremental Creation of the Cryogenic Lesion 180
The Reversible Buffer Zone 182
Clinical Results 183
Preoperative Status 183
Postoperative Status 184
Recurrence of Symptoms 186
Surgical Complications 186
References 186

Electrophysiological Recordings in Stereotaxic Thalamotomy for Parkinsonism 189
G. Guiot, P. Derome, G. Arfel, and S. Walter, Suresnes-Paris

Introduction 189
Historical Background 190
Anatomy 191
The Thalamic Area 192
Components 192
Discussion 194
Campotomy 198
Delineation of the Chosen Target 199
Radiologic Studies of the Target Structure 201
Electrophysiology 203
Introduction 203
Trajectory 204
Technique of Recordings 205
Electrophysiological Characteristics of the Ventral Nuclei 208
Electrophysiological Delineation of the Target 209
Posterior Limit 209
Anterior Limit 214
Laterality 215
Somatotopy of the VP Nucleus 215
Location of Capsular Penetration 216
Conclusion 218
References 219

Surgery for Epilepsy 222
D. Jinn ai and J. Mukawa, Osaka

Introduction 224
History of Surgical Treatment for Epilepsy 224
Surgical Treatment in Modern Times 225

Contents IX

Indirect Approaches 225
Procedures Based on Endocrinological Hypotheses 225
Peripheral Surgery 226
Surgery Based on the Auto-Intoxicating Theory 226
Vascular Procedures 226
Direct Approaches 227
Cortical Excision 227
Ablation of Area 6 of Brodmann 227
Temporal Lobectomy 228
Hemispherectomy 228
Undercutting or Leucotomy (Lobotomy) 229
Drainage and Ventriculostomy 229
Cranioplasty 229
Durai Graft 230
Pneumoencephalography 230
Stereotaxic Surgery 230
Local Cortical Hypothermia and Application of GABA and
its Derivatives 230
Surgery for Epileptogenic Expanding Lesions 231
Incidence 231
Incidence According to Location in the Brain 232
Infratentorial Tumors 232
Supratentorial Tumors 232
Seizure Incidence According to the Nature of the Lesion 232
Gliomas 232
Meningiomas 233
Subdural Hematomas 233
Brain Abscess 233
Results of Extirpation 234
Meningiomas (Meningeal Fibroblastoma) 234
Astrocytomas 234
Glioblastoma multiforme 235
Brain Abscess 235
Discussion 236
Focal Cortical Excision 237
Technique of Excision of Epileptogenic Foci 237
Preparation of the Patient 238
Analgesia and Anesthesia 238
Craniotomy 238
Electrical Stimulation 238
Electrocorticography 239
Cortical Excision 239
Indispensable Cortex 240
Postoperative Care 240
Results of Cortical Excision 241
Discussion 246

Temporal Lobectomy 247
Introduction 247
Indications 248
Selection of the Surgical Procedures 249
Technique of Temporal Lobectomy 250
Discussion Concerning the Necessity of Additional Insulectomy 254
Pathology 255
Results 258
Complications 260
Discussion 262
Stereotaxic Surgery for Epilepsy 262

Introduction 262

Stereotaxic Surgery for Neocortical Seizures 263

Subcorticogenic Seizures 263

Pallidoansotomy and Pallidoamygdalotomy 263

 Interruption of Preferential Pathways for Convulsive Impulses 265

Lenticulotomy 266

Putamectomy 267

Forel-H-Tomy 267

Stereotaxic Surgery for Temporal Lobe Epilepsy 271

Fornicotomy 272

Upper Mesencephalic Reticulotomy 272

Hypothalamotomy 273

Amygdalotomy 273

Dorsomedial Thalamotomy 274

Other Approaches 275

Discussion 275

Discussion and Conclusions 277

References 280

Stereotaxic Approach to Epilepsy. Methodology of Anatomo-Functional Stereotaxic Investigations 297

J. Talairach and J. Bancaud, Paris

General Methodology 298

Procedure for Preoperative Investigation 298

Procedure for Standard Electro corticographic Investigation 299

Methods of Stereotaxic Investigation 303

Principles of Anatomic Stereotaxic Investigation 306

Essential Conditions for Investigation 306

Principles of Stereotaxic Localization 306

Direct Stereotaxic Localization of Cerebral Structures 310

Indirect Stereotaxic Localization of Cerebral Structures 314

Application of Stereotaxic Localization Procedures to the Implantation of Intracranial Electrodes 321

Contents XI

Principles of Functional Stereotaxic Investigations (SEEG) 330

Choice of Structures to Be Investigated 331

Acute and Chronic Investigations 332

The SEEG Investigation 332
The Importance of Neurophysiological Tests for the Localization of the Targets in Stereotaxic Neurosurgery 355
F. Marossero, Milano

Introduction 355
Surgery for Parkinson’s Disease 357
Localization of Stereotaxic Targets 358
Electrical Stimulation of the Target and Surrounding Structures 361
Motor Responses to Electrical Stimulation of the Thalamus and Adjacent Structures 361
Subjective Sensory Responses to Electrical Stimulation of Nucleus VPL and VPM 365
Evoked Cortical Potentials from Thalamic Stimulation 368
Depth Electroencephalography (SEEG) and Routine EEG during Stereotaxic Procedures 372
Recording of Thalamic Unit Activity with Microelectrode Techniques 372
Modifications of Spontaneous Tremor 373
Other Tests for Target Localization 378
References 380

The Place of L-Dopa in the Treatment of Parkinson's Disease 387
J. Siegfried, Zürich

History of Classic Medical and Surgical Treatment 387
History of L-Dopa Therapy 389
Editorial Preface

The delay in appearance of this 5th volume is a source of chagrin to the editors. Most of the authors of the chapters herein submitted their manuscripts many months ago; Drs. Krayenbühl, Maspes and Sweet tender their humble apologies to the punctual essayists. Fortunately the sections on neurosurgical treatment of involuntary movements and of epilepsy were written at a time at which the subject had reached a relative plateau from which it has not moved in a major way. Although there are many rapidly changing areas in neurosurgery where knowledge is explosively expanding our diagnostic and therapeutic horizons, this group of chapters is not obsolescent by the time the reader will receive it.

This volume presents in one convenient place a comprehensive exposition and summary of the advantages and risks attendant upon the procedures worked out by each of the several active schools of stereotactic neurosurgery in the fields under discussion. We are thankful to the major exponents of each school for their willingness to undertake the arduous collation and evaluation of their efforts over the past quarter century. The product should enable the neurosurgeon to pick and choose from each school’s techniques and knowledge those features most convincing to him.

We know of no comparable presentation.

It is noteworthy that 7 nations are represented in the 9 chapters in the volume, and that the 2 nations each providing two chapters are France and Japan. Indeed when we recognize that the Canadian group of Bertrand
and colleagues speak French as their primary language we become even more aware of the evidence of the eminence of the French culture in stereotactic techniques vis-à-vis the brain. If there was ever a monopoly on innovation and superior performance in neurosurgery among those whose native tongue is English, such a degree of dominance of that or any other national grouping is gone. There never was anything to prevent literally anyone from having a good idea. It is now apparent that favorable conditions are present in many cultures to permit such ideas from coming to fruition. It is equally apparent that no one can stay abreast of the field of neurosurgery if he does not keep himself cognizant of ‘what’s new’ from many quarters of the globe. It remains an objective of ‘Progress in Neurological Surgery’ to facilitate this global recognition of merit in our field.