Body Surface Mapping of Cardiac Fields

Advances in Cardiology

Vol. 10

S. Karger Basel Mnchen Paris London New York Sydney

Body Surface Mapping
of Cardiac Fields

Editors:
STANLEY RUSH and EUGENE LEPESCHKIN, Burlington, Vt.

With 139 figures and 7 tables

Advances in Cardiology

Vol. 1-3: Please ask for details

S. Karger Basel Mnchen Paris London New York Sydney
Contents

List of Contributing Authors .. IX
Preface .. XIII

I. Introduction

LEPESCHKIN, E. (Burlington, Vt.): History of Electrocardiographic Thoracic Mapping 2
LEPESCHKIN, JULIE WILSON (Burlington, Vt.): Three Cardiologists from a Mural ... 11

II. Instrumentation and its Utilization

WYATT, R. F. and Lux, R. L. (Salt Lake City, Utah): Application of Multiplexing Techniques in the Collection of Body Surface Maps from Single Complexes .. 26
YOSHIMOTO, C. and TAKAYA, K. (Sapporo): Colored Computer Animation of Cardiac Fields on Chest Wall .. 38
Panel Session: Technical Aspects of Mapping (Moderator and Editor: R. B. PEARSON, Downey, Calif.) .. 42

III. Heart-Lead Studies

HORACEK, B. M. (Halifax, Nova Scotia): Numerical Model of an Inhomogeneous Human Torso .. 51
Contents VI

RUSH, S. and CHEN, B. (Burlington, Vt.): A New Normalized Image Surface Representation of the Heart-Lead Relations ... 64
ABILDSKOV, J.A.; BURGESS, M. J.; MILLAR, KAY; VINCENT, G. M.; WYATI, R. F., and Lux, R. L. (Salt Lake City, Utah): Distribution of Body Surface Potentials with Experimentally-Induced Multiple Cardiac Generators 69
LEPESCHKIN, E. (Burlington, Vt.): Mapping of Stimulus Distribution from Implanted Cardiac Pacemakers as a Method of Studying EGG Transfer Factors 77
RUSH, S.; RICCA, A.; SALA, M. and TACCARDI, B. (Burlington, Vt.): Multiple Peaks from a Single Dipole in a Homogeneous Torso Model 89

IV. Activation Sequence: Measurement and Simulation

DAM, R. TH., VAN; OOSTEROM, A. VAN, and DURRER, D. (Amsterdam): Intramural Activation Sequence in Human and Canine Hearts 96
BARR, R. C. and SPACH, M. S. (Durham, N. C.): Isopotential Body Surface Maps and Their Relationship to Atrial Potentials in the Dog 100
MACCHI, E. (Halifax, Nova Scotia): Digital-Computer Simulation of the Atrial Electrical Excitation Cycle in Man ... 102
BOINEAU, J. P.; BARR, R. C. and PILKINGTON, T. C. (Downey, Calif.): Simulation of Body Surface Potentials in the Dog 113
ALCH, P. D.; DUCIMETIRE, P., and LACOMBE, J. (Caen): Computer Model of Cardiac Field in Infinite Homogeneous Three-Dimensional Medium 114
BOINEAU, J. P. (Downey, Calif.): Ventricular Activation as it Relates to Body Surface Potential Distributions in the Presence of Specific Cardiac Abnormalities 119
SELVESTER, R. H. and GILLESPIE, T. L. (Downey, Calif.): Simulated ECG Surface Map's Sensitivity to Local Segments of Myocardium 120

Panel Session: Correlation of Body Surface Potentials with Heart Potentials
(Moderator and Editor: J. P. BOINEAU, Downey, Calif.) 139

Panel Session: Correlation of Body Surface Potentials with Heart Potentials (Moderator and Editor: J. P. BOINEAU, Downey, Calif.) 139
V. Information Content and Quantification of Surface Potentials

KORNREICH, F. (Brussels): Quantitative Evaluation of Body Surface Information 156

Contents VII

MILLER, C. B.; HORAN, L. G. and FLOWERS, NANCY C. (Augusta, Ga.): Approximation of Dipole Content in the Total Body Surface ECG 167
PILKINGTON, T. C. (Durham, N. C.): Representation of Body Surface Potentials by Convergent and/or Efficient Multipolar Representations - A Myth? 170
HORAN, L. G. and FLOWERS, NANCY C. (Augusta, Ga.): VCG Sensitivity to Dipole Content in Body Surface Potential Maps 171
SCHMITI, O. H. (Minneapolis, Minn.): Optimization of Body Surface Potential Measurements with Respect to Clinical Utility 177
KORNREICH, F. (Brussels): Missing Information in Different VCG Systems 178

VI. Inverse Solutions

NELSON, C. V. and HODGKIN, B. C. (Portland, Me.): Determination of Magnitude, Direction, and Location of the Resultant Dipole of the Isolated Perfused Mammalian Heart from Surface Measurements 184
BARNARD, A. C. L.; HOLT, J. H.jr., and KRAMER, J. O.jr. (Birmingham, Ala.): Body Surface Maps and their Interpretation 190
FORBES, A. D. (Palo Alto, Calif.): Forward and Inverse Solutions Using Distributed Current Sources .. 199
FORBES, A. D. and GROEBEN, J. VON DER (Palo Alto, Calif.): A Comparison of Epicardial Maps Obtained by Inverse Solution with Activation Sequence Maps 209
IDEKER, R. E.; COX, J. W. jr.; KELLER, F.W. and BRODY, D.A. (Memphis, Tenn.): Test of the Multiple Dipole Array as an Inverse Generator, Based on Accurately Determined Model Data .. 217
IDEKER, R. E.; KELLER, F.W.; Cox, J.W. jr.; PHILLIPS, H.A. and BRODY, D.A. (Memphis, Tenn.): Test of the Multiple Dipole Array as an Inverse Generator, Based on Data from Isolated Rabbit Hearts 224
BAKER, C. M. and PILKINGTON, T. C. (Memphis, Tenn.): Time-Dependent Inverse Electrocardiography .. 230
DOTTI, D. (Milan): A Space-Time Solution of the Inverse Problem 231
MARTIN, R. O. and PILKINGTON, T. C. (Memphis, Tenn.): Determination of Epicardial Potentials from Torso Potentials 239
RUSH, S. (Burlington, Vt.): Effects of Dipole Separation on Surface Potentials 240
VII. Clinical Mapping

KORNREICH, F. (Brussels): Diagnostic Usefulness of Multiple Surface Recordings ... 257
FLOWERS, NANCY C. and HORAN, L. G. (Augusta, Ga.): Body Surface Maps in Primary Myocardial Disease .. 270

Contents VIII

PEARSON, R. B.; VICARS, J., and SELVESTER, R. H. (Downey, Calif.): Local Characteristics of T Wave Maps in Infarct ... 283
LEPESCHKIN, E. (Burlington, Vt.): Multiple Precordial Leads in the Diagnosis of Intraventricular Conduction Disturbances 284
Panel Session: Clinical Studies and Prognosis for Mapping as a Clinical Tool Moderator and Editor: B. TACCARDI, Milan) 296

VIII. Magnetocardiography

BAULE, G. M. (Syracuse, N. Y.): Some Considerations for Magnetic Lead Synthesis ... 304
COHEN, D. and MACARTHUR, J. D. (Cambridge, Mass.): MCG's from an Insulated, in Vivo Canine Heart ... 311
GRYNSZPAN, F. and GESELOWITZ, D. B. (University Park, Pa.): External Magnetic Field of a Current Dipole in a Conducting Sphere 312
COHEN, D. and JOST, A. (Cambridge, Mass.): Sensitivity of the Magnetocardiogram to Surface Versus Internal Currents 318
LEPESCHKIN, E. (Burlington, Vt.): Representation of the Electrocardiographic and Magnetocardiographic Lead Fields by Means of the Fluid Mapper Technique 319
LEPESCHKIN, E. (Burlington, Vt.): Tentative Analysis of the Normal Magnetocardiogram ... 325

Authors Index .. 333
Subject Index ... 335
Index vols. 1-9 ... 338

List of Contributing Authors
ABILDSKOV, J. A., MD, University of Utah, Bldg. 100, Salt Lake City, UT 84112, USA
D’ALCH, P., Ph. D., Laboratoire de Biophysique (Electrophysiologie), Universit, Esplanade de la Paix 14, Caen, France
AMBROGGI, L. DE, MD, Ist Clin. Med., Univ. Milano, Milano, Italy
BAKER, C. M., Ph. D., Division of Biomedical Engineering, Duke University, Durham, NC 27710, USA
BARNARD ANTHONY, Ph.D., Department of Biomathematics, University of Alabama School of Medicine, Birmingham, AL 35233, USA
BARR, ROGER, Ph.D., Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
BAULE, G. M., Ph.D., ICR Inc., 1608 W. Genessee Street, Syracuse, NY 13210, USA
BOINEAU, JOHN, MD, Rancho Los Amigos Hospital, 7601 E. Imperial Highway, Downey, CA 90242, USA
BRILLER, STANLEY, MD, Hospital of the University of Pennsylvania, 3400 Spruce St., Philadelphia, Pa. 19102, USA
BRODY, DANIEL A., MD, Division of Clinical Physiology, University of Tennessee, 951 Court Ave., Rm. 456D, Memphis, TN 38103, USA
BURGESS, MARY Jo, MD, Bldg. 100, University of Utah, Salt Lake City, UT 84112, USA
CHEN, BORIS, Electrical Engineering Department, University of Vermont, Burlington, VT 05401, USA
COHEN, DAVID, Ph. D., Francis Bitter National Magnet Laboratories, 170 Albany Street, Cambridge, MA 02139, USA
COX, J. W., Division of Clinical Physiology, University of Tennessee, 951 Court Ave., Rm. 456D, Memphis, TN 38103, USA
VAN DAM, R. TH., MD, Department of Cardiology, Wilhelmina Gasthuis, Amsterdam, The Netherlands
DOTTI, DOMENICO, Prof., Divisione Elettronica, EISE, Segrate, Milano, Italy
DUCIMETIRE, P., Ph. D., Laboratoire de Biophysique (Electrophysiologie), Universit, Esplanade de la Paix 14, Caen, France
DURRER, D., MD, Department of Cardiology, Wilhelmina Gasthuis, Amsterdam, The Netherlands

List of Contributing Authors X

FISCHMANN, EUGENE J., MD, Department of Medicine, Freedman's Hospital, 6th and Bryant Streets, N. W., Washington, DC 20001, USA
FLOWERS, NANCY, MD, Section of Cardiology, Forest Hills Division, V.A. Hospital, Augusta, GA 30904, USA
FORBES, A. DEAN, 1950 Cooley Ave. 3201, Palo Alto, CA 94303, USA
GESELOWITZ, DAVID, Ph.D., 328-H Hammond Bldg., The Pennsylvania State University, University Park, PA 16802, USA
Cambridge, MA 02139, USA
MACCHI, EMILIO, Medical Biophysics and Bioengineering Research Laboratories, Sir Chas. Tupper Med. Bldg., Dalhousie University, Halifax, Nova Scotia, Canada
MARTIN, R. O., Ph.D., Division of Biomedical Engineering, Duke University, Durham, NC 27710, USA
MEHROTRA, P.P., MD, Department of Medicine, Freedman's Hospital, 6th and Bryant Streets, N. W., Washington, DC 20001, USA
MILLAR, KAY, MD, Bldg. 100, University of Utah, Salt Lake City, UT 84113, USA
MILLER, C. B., Division of Biomedical Engineering, Duke University, Durham, NC 27710, USA
NELSON, CLIFFORD V., Ph. D., Maine Medical Center, 22 Bramhall Street, Portland, ME 04100, USA
OKAJIMA, M., MD, Institute for Environmental Medicine, Nagoya University, Nagoya, Japan
VAN OOSTEROM, ADRIAAN, Lab. voor Medische Physica., Herengracht 196, Amsterdam, The Netherlands
PEARSON, ROBERT, MD, Rancho Los Amigos Hospital, 7601 E. Imperial Highway, Downey, CA 90242, USA
PHILLIPS, H. A., MD, Division of Clinical Physiology, University of Tennessee, 951 Court Ave., Rm. 456D, Memphis, TN 38103, USA
PILKINGTON, THEO, Ph. D., Division of Biomedical Engineering, Duke University, Durham, NC 27710, USA
PLONSEY, ROBERT, Ph.D., Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
RAUTAHARJU, P. M., MD, Medical Biophysics and Bioengineering Research Laboratories, Sir Chas. Tupper Med. Bldg., Dalhousie University, Halifax, Nova Scotia, Canada
REYNOLDS, E. W., jr., MD, Chief of Cardiology, University of Wisconsin Medicine School, 420 Charter Street, Rm. 514, Madison, WI 53706, USA
RICCA, A., Istituto Simes di Cardiologia Sperimentale, Via Colombi 18, 20161 Milano, Italy
RITSEMA VAN ECK, H., Ph.D., 32 Bondweit, Poortugaal, The Netherlands
RUSH, STANLEY, Ph. D., Department of Electrical Engineering, University of Vermont, Burlington, VT 05401, USA
SALA, A, Istituto Simes di Cardiologia Sperimentale, Via Colombi 18, 20161 Milano, Italy
SCHER, ALLEN, Ph. D., Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98105, USA
SCHMITT, OTTO H., Ph. D., Biophysics Group, 200 TNCE, Electrical Engineering, University of Minneapolis, Minneapolis, MN 55455, USA
SELVESTER, RONALD, MD, Rancho Los Amigos Hospital, 7601 E. Imperial Highway, Downey, CA 90242, USA
SILVESTER, PETER, Ph. D., Department of Electrical Engineering, PO Box 6070, Montreal
Preface

Those who have been interested in electrocardiography from a physical standpoint have always been aware of the possibility that more information might be obtained by using a larger number of leads. Wilson's Tetrahedron and precordial leads were the first steps in this direction to have become accepted practice. Further extensions have been limited by a variety of difficulties: collecting, storing, processing, and presenting the additional data as well as the greatly increased time necessary to apply the leads to the patient.
Moreover, serious questions were raised and supporting evidence was presented over the years that purported to show that recordings from more lead connections would provide not new but only redundant information. The last decade saw the introduction of digital computers into medicine, the availability of tape recorders, and the development of low-power microcircuits and solid state switches with great speed and low noise; as a result, all the technical problems, with the possible exception of those associated with lead attachment, have progressively diminished in severity. The recording and presentation of complete whole-body time-varying maps is presently no more expensive or time-consuming and considerably less dangerous and uncomfortable to the patient than many currently accepted diagnostic procedures considered as routine. At this writing, it is probable that more than a thousand subjects have been mapped and new maps are being added daily.

As the maps began to accumulate, many striking and unexpected features were observed and attention slowly shifted from the technical aspects to focus on other questions: Is there enough new information in body surface maps to justify the procedure in clinical situations; would Body Surface Mapping become a widespread clinical method and constitute a subdivision of electrocardiographic practice as Vectorcardiography and Standard Twelve Lead Electrocardiography have become; might the new diagnostic criteria discovered in maps ultimately be found with just a few additional leads; to what extent could a mathematically generated ‘inverse solution’ from maps specify physiologically meaningful sources; and finally, how best could maps be used and interpreted in the light of new data on human heart activation sequences?

It was the urgency and importance of these questions that prompted the organization of the Conference on Body Surface Mapping which was held on August 22-25, 1972 at the University of Vermont. Approximately 60 investigators with a variety of specialized backgrounds met in single session to listen to and discuss some 50 papers related to the Conference theme. The main conclusion was that mapping already does contribute to clinical diagnosis and that there is every reason to believe that its potential for doing so in the future is far greater still. The participants also decided that publication of the proceedings would make available to the conferees and other investigators new information about body surface mapping that should help speed the conversion of research results to clinical procedures. This volume is the result of that decision.

We would like to take this opportunity to acknowledge and thank the
several organizations and individuals who contributed greatly to the successful outcome of the Conference. First of all, the Heart and Lung Institute of the National Institutes of Health contributed significant financial support under PHS Grant 15115-01; participation of Dr. LEPESCHKIN was assured through his Research Career Award 5-K6-HL-440. In addition, the National Life Insurance Company of Vermont and Marquette Electronics provided additional funds that were extremely helpful. The excellent supporting services furnished by the University of Vermont received widespread praise from the attendees and allowed for maximum concentration on the exchange of scientific information. The Panel Session organizers, Drs. JOHN BOINEAU, ROBERT PEARSON, and BRUNO TACCARDI, gave a great deal of time to arrange comprehensive and informative sessions. Dr. TACCARDI also acted as a consultant in the Conference planning from its inception, and we are greatly indebted to him for his many valuable suggestions. We would also like to express our grateful appreciation to our associates: MARTHA CAMERON, YVONNE STARCHESKA, BENJAMIN TIER, BORIS CHEN, and JAIRO CORREA, who worked long and unusual hours to enable the meeting to run smoothly. Finally, we would like especially to thank Mrs. HELEN RUSH, who organized the social aspect of the Conference, and Mrs. JULIE LEPESCHKIN who, as an after-dinner speaker, shared with the entire group recollections of her experiences as the daughter of Dr. FRANK WILSON. Her talk represents a unique contribution to the history of electrocardiography and she has kindly consented to permit inclusion of an abridged version in this volume.

STANLEY RUSH
EUGENE LEPESCHKIN