Contents
Editor's Preface XI
Preface XIII
I. Introduction 1
A. Historical Notes 1
B. Recent Developments 2
II. Definitions and Classification of the Chlamydia 4
A. Definitions of the Chlamydia 4
1. The Agents of Psittacosis, Lymphogranuloma Venereum and Trachoma (PLT) -- Members of the Order Chlamydiales 4
2. The Classification of the Chlamydia (PLT) Agents 5
3. The Non-Viral Nature of the Chlamydia 6
4. The Bacterial Aspects of the Chlamydia 7
B. Relationship between C. trachomatis and C. psittaci 7
1. Division of Chlamydia into Two Distinct Subgroups 8
 a) Based on Biological Properties 8
 b) Based on Susceptibility to Sulfadiazine and D-Cycloserine 8
 c) Based on Antigenicity 8
 d) Based on DNA Homology 8
2. Further Subdivision of the C. trachomatis Agents 9
C. Evolution of the Chlamydia) Agents 9
1. Evolutionary Relationship between C. trachomatis and C. psittaci 9
2. Evolution of C. trachomatis Strains 11
III. Isolation and Propagation of TRIC and Related Agents 12
A. Isolation of TRIC Agents from the Conjunctivae of Trachoma Patients 12
 1. Difficulties in the Diagnosis of Trachoma and Inclusion Conjunctivitis . 12
2. Isolation of TRIC Agents in the Yolk Sac of Embryonated Eggs 13
 a) Studies by T'ang and Collaborators 13
 b) Further Isolations of Agents from the Conjunctivae of Trachoma Patients 13
 c) Factors Affecting the Isolation of Trachoma Strains 14
B. Direct Isolation of TRIC Agents in Cultured Cells 14
 1. The Use of McCoy Cells for the Isolation of the Trachoma Agents 14
 2. Isolation of TRC Agents from Human Disorders 15
 a) Isolation of Trachoma Strains from the Urogenital Tract and the Rectum 15
 b) Isolation of Chlamydia from LGV and Other Human Disorders 16
VI. Contents
C. Growth of C. trachomatis in Cultured Tissues 16
 1. Explants of Chick Embryos 16
 2. Adaptation of C. trachomatis Agents to Growth in Conjunctival Cells in
vitrō 16

3. Adaptation of Trachoma to Mouse Macrophages 17
4. Continuous Propagation of Chlamydia in Cell Lines 17
5. Enhancement of Trachoma Agent infectivity by DEAE-Dextran 17

D. Properties of the T’ang (TE 55) Strain 18
1. Early Passages of the TE 55 Strain in Chick Embryos 18
2. Adaptation of TE 55 to Growth in Cell Cultures 18
3. Properties of the TE 55 Strain Propagated in Other Cell Lines 19
4. Propagation of TE 55 in Mice 19
5. Development of Fast Killing (f) Strains of TE 55 and Related Agents 20
6. Antigenic Differences of TE 55 Strains 21
7. Antigenic Properties of the T’ang TE 55 Strain 21

IV. The Biology of the Trachoma Agent 23
A. The Developmental Cycle 23
1. The Interaction of e. b. with Host Cells 23
2. Site of Development in the Infected Cell 24
3. The Biological Activity of Trachoma Elementary Bodies -- Determination of Infectivity 24
 a) Titration in Embryonated Eggs 24
 b) Titration in Cultured Cells 24
4. Stages of the Developmental Cycle 25
B. Factors Affecting C. trachomatis Development 26
1. Nutritional Factors 26
 a) Amino Acids 26
 b) Serum 27
2. Temperature of Incubation 27
3. The Host Cell 28
C. Effects of C. trachomatis Infection on the Host Cell 28
1. Effect on Host Cell Metabolism 28
2. Induction of Interferon Synthesis 28
D. Morphology of the Developing C. trachomatis Inclusion Bodies 28
1. Correlation between Morphology and Infectivity 29
2. Morphology of C. trachomatis Inclusions during the Noninfective Phase
3. The Morphology of C. trachomatis Inclusion Bodies during the Infectivity-Increase Phase 30
4. Comparison between C. trachomatis Inclusions in Cultured Cells and Conjunctival Cells from Trachoma Patients 30
5. Isolation and Characterization of C. trachomatis Initial Bodies 30
 a) Sucrose Gradient Analysis 30
 b) Characterization of the Initial Bodies 32
6. Initial Bodies Are Precursors to Elementary Bodies. The Transition of the Initial Bodies to Elementary Bodies 32
V. The Composition of Trachoma Elementary Bodies (e. b.) 34

Contents VII

A. Isolation and Purification of e. b. 34
1. Purification of e. b. from Infected Yolk Sacs 34
 a) Sucrose Gradient Centrifugation 34
 b) DEAE-Sephadex Column Chromatography 34
 c) Genetron Treatment 34
2. Isolation of e.b. from Infected Cultured Cells 35

B. The Chemical Composition of Trachoma e.b. 35
1. The DNA Genome 35
 a) The Molecular Weight of the DNA Genome 35
 b) Properties of C. trachomatis DNA 36
2. RNA in the e.b 37
 a) Ribosomal Subunits 37
 b) Ribosomal RNA 37
 c) Transfer RNA 37
 d) Messenger RNA 37
3. Proteins in e.b 38
4. Lipids in the e.b. 38
5. Cell Membranes and Cell Walls in Trachoma e.b. 39

C. Antigenic Composition of Trachoma e. b 39
1. Antigens 39
2. Chemical Composition of the Group-Specific Antigen 39
3. Hemagglutinin 40
4. Toxin 40

D. Enzymatic Activities in Trachoma e. b. 40
1. DNA-Dependent RNA Polymerase 40
2. Polynucleotide Phosphorylase 42
3. Enzymes for Glucose Metabolism 42
4. Transaminase Activity 42

VI. Molecular Aspects of the Developmental Cycle of C. trachomatis 43

A. Initiation of e. b. Development after Infection of Eukaryotic Cells 43
1. Initiation of RNA Synthesis in the e. b 43
2. Activation of the e. b.-Associated DNA-Dependent RNA Polymerase 43
3. The Role of Host Cell Mitochondria in e. b. Development 43
4. Initiation of Protein Synthesis in the e. b. 44

B. RNA Synthesis during the Trachoma Developmental Cycle 44
1. Cytoplasmic Site of RNA Synthesis in the C. trachomatis-Infected Cell 44
2. Rate of C. trachomatis RNA Synthesis 44
3. Synthesis of Precursors to Ribosomal RNA 45
4. Maturation of Trachoma Ribosomal RNA 46
5. Synthesis of Trachoma 5S and 4S RNA Species 47
6. RNA Synthesis in the Initial (Secondary) Bodies 47
7. DNA-Dependent RNA Polymerase in the Purified Initial Bodies 49
C. DNA Synthesis 49
1. Time Course of DNA Synthesis 49
2. Site of DNA Synthesis 49
3. DNA Synthesis and Morphogenesis 50

VIII. Contents
D. Protein Synthesis 50
1. Time Course of C. trachomatis Protein Synthesis 50
2. Characterization of Trachoma Proteins Synthesized in Infected Cells 51
E. Glycogen Synthesis 51
1. Demonstration of Glycogen in the Inclusions of C. trachomatis 51
2. Relationship between Glycogen Synthesis and the C. trachomatis Growth Cycle 52
3. Effect of Inhibitors on Glycogen Biosynthesis 52
 a) Effect of Penicillin 52
 b) Effect of Fluorouracil on Glycogen Synthesis and Degradation 53
 c) Effect of Phlorizin 53
4. Glycogen Synthetase 53
F. Lipid Metabolism and Membrane Biosynthesis 54
1. 3H-Choline Incorporation into Developing Inclusion Bodies 54
2. The Inclusion-Body Limiting Membrane 54
3. The Membranes of the Initial and Elementary Bodies 54
G. Cell Wall Synthesis 55

VII. Antibiotics against C. trachomatis and Trachoma 56
A. Mode of Action of Antitrachoma Drugs 56
1. Sulfonamides 56
 a) Effect on Development of the Trachoma Agent 56
 b) Mode of Action of Sulfa Drugs 56
 c) Mutations to Sulfonamide-Resistant Trachoma Strains 57
2. Inhibitors of Folic Acid Metabolism 58
 a) Aminopterin 58
 b) Trimethoprim 58
B. Mode of Antitrachoma Action of Antibiotics 58
1. Penicillin 58
 a) Inhibition of Trachoma Development 58
 b) Mode of Action 59
2. Tetracyclines 59
3. Chloramphenicol 60
4. Rifampicin 61
 a) Effect on Trachoma Development 61
 b) Irreversibility of Rifampicin Inhibition 61
c) Mode of Action of Rifampicin 62
d) Inhibitory Effects by Rifampicin Derivatives 62
5. Streptovaricin 63
6. Macrolides 63
7. Hydroxyurea 63
8. Metabolic Analogs 64
9. Antibiotics Inhibitory at High Concentrations 64
C. Drugs and Antibiotics in the Treatment of Trachoma Patients 64
1. Treatment with Sulfonamides 65
 a) Long-Acting Sulfonamides 65
 b) Sulfonamide Treatment in Endemic Areas 65
Contents IX
2. Treatment with Antibiotics 65
3. Doxycycline Treatment of Patients with Chronic Trachoma 66
D. Effect of Interferon on Experimental Trachoma Infections 66
1. Effect of Interferon on Trachoma Development 66
2. Effect of Interferon Inducers on Infection 66
VIII. Immunobiology 67
A. Immunological Responses to the Trachoma Agent 67
1. Local Antibodies in Humans 67
 a) Detection of Antibodies 67
 b) Characterization of the Antitrachoma Antibodies 67
 c) The Role of Antitrachoma Antibodies in the Eyes 68
2. Local Antibodies in Experimental Infections of Animals 68
 a) Antibody Response to Trachoma Antigens in Guinea Pig Eyes 68
 b) Local Antibodies in Monkeys' Eyes 68
3. Antitrachoma Antibodies in Human Sera 69
 a) Serum Antibodies in Trachoma Patients 69
 b) Serum Antibodies in Experimental Animals 69
 c) Effect of Route of Immunization on the Antibodies in Guinea Pigs' Eyes 70
4. Delayed Hypersensitivity 70
 a) Role in the Pathogenesis of the Disease 70
 b) In Humans 70
 c) Experimental Delayed Hypersensitivity 70
 d) Induction of Delayed Hypersensitivity in Monkeys 71
 e) Differentiation of Chlamydial Agents by a Delayed-Type Hypersensitivity Test 71
B. Characterization of Antitrachoma Antibodies 71
1. Neutralizing Antibodies 71
 a) Neutralization of Homologous Strains 71
 b) Neutralization of Heterologous Strains 72
2. Antibodies to Specific Antigens 72
 a) Antibodies to Group-Specific Antigen 72
 b) Antibodies to Cell Wall Antigens 72
C. Experimental Immunization against Trachoma 73
 1. Immunological Responses to Trachoma Vaccines in Animals 73
 a) Guinea Pigs 73
 b) Owl Monkeys 73
 2. Other Species of Monkeys 73
 a) Dissemination of Infective Trachoma Elementary Bodies in Baboons 73
 b) Importance of Content of Elementary Bodies in the Vaccine 74
 c) Immunization of Monkeys with a Trivalent Vaccine 74
 d) Conclusions 74
 3. Immunization of Humans 75
 a) Antitrachoma Vaccination Trials in Taiwan 75
 b) Vaccination of Children in Punjab Indian Villages 75
 c) A Field Trial in Saudi Arabia 76
 d) Antitrachoma Vaccination Trials in Ethiopia 76
 e) Vaccinotherapy Studies in USSR 77
 f) Vaccination Trials in Gambia 78
IX. Summary and Conclusions 80
X. References 84

To the Memory of
HANS BERNKOPF (1910-1967)
Professor and Teacher of Virology
A pioneer in virus and trachoma research whose contributions to the development of research in these fields are acknowledged

Editor's Preface
Although the agent of trachoma has now been generally accepted as non-viral, it was for so long considered a virus that it seems appropriate to include this review as a Monograph in Virology. Hence, this volume should be useful not only to those working directly with the trachoma agents, but also to virologists who need an overview of the developments during the last decade which have distinguished these chlamydial agents from the viruses.

JOSEPH L. MELNICK
Preface
The opportunity to write a review on the recent developments in the research on the agent of trachoma had arisen from the invitation of Professor J. L. MELNICK to revise the review written in 1962, by the late Professor HANS BERNKOPF. As a result of marked developments in research on the immunology and biochemistry of the agent, a new review which will compile the knowledge added in the last decade seemed necessary. I have, therefore,
referred mainly to studies on Chlamydia trachomatis which were published
during the last decade. The very important studies on Chlamydia psittaci are
beyond the scope of this monograph.

I wish to thank my colleagues, Professor I. C. MICHAELSON and Dr. B.
MAYTHAR from the Department of Ophthalmology, Hadassah University
Hospital, Jerusalem; Drs. Z. ZAKAY-RONES, I. SAROV, from the Department
of Virology, B. GUTTER, and Y. ASHER, Y. COHEN, and H. LOKER
from the Laboratory for Molecular Virology, for their continuous and
enthusiastic collaboration; Professor S. E. LURIA, Department of Biology,
Massachusetts Institute of Technology, Cambridge, Mass., for the critical
discussions on the nature of obligate parasitism of viruses and prokaryotes
in eukaryotic cells; Professor E. JAWETZ, Department of Microbiology,
University of California, San Francisco, Calif., for his continuous interest
and support; Dr. M. L. TARIZZO, World Health Organization, Geneva, for
his continuous interest and help; Professor A. L. BARRON, on sabbatical
leave from the Department of Microbiology, School of Medicine, State
University of Buffalo, N. Y.; Professor H. M. JENKIN, Department of Microbiology,
Hormel Institute, University of Minnesota, Austin, Minn., for the
critical reading of the manuscript and for their comments; Dr. Julia Hadar
for proofreading the manuscript; and my wife Miriam Becker for her continuous
encouragement.

The preparation of the review was supported by a grant (No. 06-501-1.38)
from the National Library of Medicine, USA, to the Israel Journal of Medical
Sciences.

The research on trachoma in the author’s laboratory was supported by
grants from the National Institutes of Health, Bethesda, Md., USA, and
the World Health Organization, Geneva, Switzerland.

The review of the literature was completed July 1972. However, some
manuscripts published during 1973, while the Monograph was prepared,
are also included.