Acknowledgments VII
Introduction 1
Characteristics of Bats Relating to their Effectiveness as Reservoir Hosts for Viruses 3
Laboratory Care and Maintenance of Bats 8
Rabies Virus 10
Natural Rabies Virus Infection in Bats 10
Experimental Rabies Virus Infection in Bats 15
Growth of Rabies Virus in Bat Tissues in vitro 23
Arboviruses 27
Epidemiological Considerations 27
Group B Arbovirus Infections in Bats 36
Susceptibility of Bats to Experimental Infection with JBE Virus 36
Transplacental Transmission of JBE Virus in Experimentally Infected Bats 38
Influence of Environmental Temperature on Experimental JBE Virus Infections in Bats 39
Influence of Serial Passage in Bats Maintained at Low and High Temperatures on the Virulence of JBE Virus 46
The Immune Response of Bats to Experimental JBE Virus Infection 47
Natural JBE Virus Infection in Bats 52
Experimental St. Louis Encephalitis (SLE) Virus Infection in Bats 59
Natural SLE Virus Infection in Bats 61
Other Group B Virus Infections in Bats 66
Association of Bats with Group A and other Arboviruses 72
Natural and Experimental Infection of Bats with Miscellaneous Viruses 75
Studies of Factors Relating to the Inapparentness of Virus Infections in Bats 79
The Effects of 6-Thioguanine and Endotoxin on Experimental JBE and SLE Virus Infections in Bats 80
Investigations of the Immune Capabilities of Bats 81
The Role of Interferon in Inapparent Virus Infections in Bats 83
The Importance of Virus Infections in Bats 85
References 89
Editor's Preface
Work on this Monograph was nearing completion when the sudden death of Dr. SULKIN intervened. However, having worked closely with Dr. SULKIN for nearly 20 years and having been involved from the beginning in accumulating the data for this book, Ms. ALLEN graciously agreed to complete the work. It is a fitting commemoration to Dr. SULKIN to have the contributions he made in the area of viruses and bats drawn together into a single volume.
In this Monograph are presented data concerning natural and experimental virus infections of bats, as well as ways in which experimental data can be projected into the planning of field studies. Perhaps the single most interesting
aspect of viral infections in bats is the apparent lack of host response to established infection. This phenomenon may lead to large numbers of healthy carriers of rabies virus in bat populations, which maintain ever-shifting foci of infection and thus provide a constant source of infection for man and animals. Bats also act as an ideal reservoir host for arboviruses, providing infective blood meals for vectors. One indeed must be vigilant for the role that bats may play in the maintenance and dissemination of viruses to other animals and to man.

JOSEPH L. MELNICK
Acknowledgments

A number of individuals played significant roles in the planning and execution of the studies originating from this laboratory. Without their contributions this work would not have been possible. The authors are indebted to Dr. PHILIP H. KRUTZSCH, mammalogist-anatomist, who participated in the initial phases of these studies and advised concerning the capturing and handling of bats and to Dr. RUTH A. SIMS, Dr. STANLEY K. TAYLOR, Dr. WILLIAM E. STEWART II, Dr. BETTY A. HATTEN, Dr. LARRY L. LEONARD, Dr. BOBBIE L. MIDDLEBROOKS, Dr. E. PABLO CORREA-GIRON, Dr. CHANSOO KIM and Dr. YONG-JIN YANG for participation in various aspects of the program.

To those who assisted in collecting bats in widely scattered areas of the United States, Mexico and Japan the authors are extremely grateful. These include Prof. HAROLD B. HITCHCOCK, Bates College, Lewiston, Maine; Prof. JAMES B. COPE, Earlham College, Richmond, Indiana; Prof. BERNARD VILLA-R., Institute of Biology, National University of Mexico; WOODROW GOODPASTER, taxidermist, Cincinnati, Ohio; WILLIAM HANSZEN, rancher, Burnet, Texas; F. GLEN ANDERS, University of Houston; TEX VILLARREAL, Corpus Christi-Nueces County Health Department, Texas; Dr. SHOICHI IIDA, Dr. SEICHI TOSHIOKA and others at the 406th Medical Laboratory, US Army, Japan; Dr. HIROO IIDA, Dr. KEISAKU HATTORI and Dr. NORIO SAKURADA of the Hokkaido Institute of Public Health; Dr. KIYOTOSHI KANEOKO and Dr. KANJI MIYAMOTO of the Tokyo Medical and Dental University, and Dr. TAKEO FUKUDA and Dr. TOHRU SASAHARA of the Miyasaki Institute of Public Health, Japan. Dr. JORDI CASALS of the Yale Arbovirus Research Unit, New Haven, Connecticut, was most helpful in the initial phases of the identification of certain virus isolates. Special thanks are due RAY CHRISTIAN, LA RUE CHRISTIAN, HIROKO KUDO, YUMIKO KAMIJO and TERU UDAGAWA for diligence in the maintenance of bats in the laboratory and for technical assistance.

These investigations were supported by the Lampert Foundation of Beverly Hills, California; research grant 5 RO1 AI02316 and training grant VIII Acknowledgments
5 T01 AI00142 from the National Institute of Allergy and Infectious Diseases, United States Public Health Service; and National Science Foundation Grant GB-12611. Certain phases were conducted under the sponsorship of the Commission on Viral Infections, Armed Forces Epidemiological Board, and were supported by the US Army Medical Research and Development Command, Department of the Army under contract No. DA-49-193-MD-2138, and under grant No. DAHC 19-68-G-0008 from the Life Sciences Division, US Army Research Office.