A. Background ... 34
B. Sources of Vitamin D .. 35
C. The Absorption of Vitamin D .. 36
D. The Storage of Vitamin D .. 36
E. The Metabolism of Vitamin D .. 37
 1. 25-Hydroxycholecalciferol 37
 2. 1,25-Dihydroxycholecalciferol 38
 3. Other Dihydroxy-Derivatives of Vitamin D3 39
 4. Other Metabolites of Vitamin D 39
F. The Excretion of Vitamin D .. 40
III. Induction of Hepatic Microsomal Enzyme Activity 40
 A. The Nature of Hepatic Microsomal Enzyme Induction 40
 B. The Effect of Drugs on the Metabolism of Steroids 42
IV. Bone Disease in Patients Taking Enzyme-Inducing Agents 43
 A. Criteria for Diagnosis .. 43
 1. Radiology ... 43
 a) Malacic Bone Disease 43
 b) 'The Bone Disease of Epileptics' 44
 c) Osteoporosis .. 44
 2. Biochemistry ... 45
 a) Serum Calcium ... 45
 b) Serum Phosphate .. 45
 c) Serum Alkaline Phosphatase 46
 d) Serum 25-Hydroxycholecalciferol 47
 3. The Histology of Bone Biopsies 48
 B. The Incidence of Bone Disease in Epileptic Subjects 48
 1. Osteoporosis ... 49
 2. Hypocalcaemia .. 49
 3. Rickets and Osteomalacia Responding to Small Doses of Vitamin D 51
 4. Rickets and Osteomalacia Unresponsive to Small Doses of Vitamin D 52
 C. The Place of Vitamin D in the Treatment of Epilepsy 56
V. The Effect of Hepatic Microsomal Enzyme-Inducing Agents on the Metabolism of Vitamin D ... 57
 A. Background .. 57
 B. Studies in Experimental Animals 57
 1. The Absorption of Vitamin D 57
Contents VII
 2. The Binding of Vitamin D and its Metabolites by Circulating Proteins. 57
 3. The Metabolism of Cholecalciferol 58
 a) 25-Hydroxylation ... 58
 b) The Production of Dihydroxy-Derivatives of Cholecalciferol 59
 c) The Production of Highly Polar Metabolites of Cholecalciferol 59
d) Biliary Excretion of Metabolites of Vitamin D 59
4. Effect of Enzyme-Inducing Agents on Tissue Stores of Vitamin D 60
5. Attempts to Produce Bone Disease in Animals Using Enzyme-Inducing
Agents .. 60
 a) Calcium Absorption ... 60
 b) Bone Disease .. 60
6. Conclusions from Animal Studies ... 61
C. Studies in Humans .. 61
VI. Conclusions .. 62
References ... 63
Biochemical and Clinical Aspects of
5'-Nucleotidase in Gastro-Enterology
DAVID M. GOLDBERG
I. Introduction .. 71
II. Heterogeneity of 5'-Nucleotidases 72
III. Hepatic 5Nases ... 73
 A. Membrane Enzymes .. 73
 B. Soluble Enzymes .. 78
 C. Lysosomal Enzymes .. 80
IV. Liver 5Nase, Growth, and Cancer 81
V. 5Nase of Intestinal Tissues .. 82
VI. 5Nase and the Pancreas .. 83
VII. The Clinical Significance of Serum 5Nase 84
 A. General Considerations ... 84
 B. 5Nase in Cirrhosis ... 92
 C. 5Nase in Hepatic Cancer 93
 D. 5Nase in Infancy and Pregnancy 96
 E. Specificity of Serum 5Nase Activity 98
 F. Mechanism of Elevated Serum 5Nase Activity 99
VIII. Methods of 5Nase Assay ... 101
Acknowledgments .. 101
References ... 102
Alkaline Phosphatase
STUART T. CHEN
I. Introduction .. 110
II. Measurement of Alkaline Phosphatase 111
 A. Manual Method .. 111
 B. Electrophoresis ... 112
Contents VIII
1. Use of Triton X-100 .. 113
2. Isoelectric Focusing in Polyacrylamide Gel 113
 C. Radioimmunoassay ... 114
A. Organs Involved in Alcohol Metabolism

B. Enzymatic Pathways of Alcohol Metabolism
1. Alcohol Dehydrogenase (EC 1.1.1.1)
 a) Biochemical Properties
 b) Role of ADH in Alcohol Metabolism in vivo. Hepatic Redox Changes
2. Catalase (EC 1.11.1.6)
3. Microsomal Systems for Ethanol Oxidation
 a) Evidence for Activity in vitro of a Microsomal Pathway for Alcohol Metabolism
 b) Evidence for Microsomal Alcohol Oxidation in vivo
 c) Effects of Ethanol on Drug Metabolism
4. Relative Importance and Possible Interrelations of the Different Ethanol-Oxidizing Mechanisms
5. Acetaldehyde and Acetate Oxidation

C. Rate of Ethanol Metabolism
1. Methods Measuring Alcohol Elimination
2. Factors Influencing Ethanol Metabolic Velocity after Chronic Alcohol Intake
 a) Catalase and MEOS Activities after Chronic Alcohol Intake
 b) ADH Activity and Rate of Ethanol Oxidation
 c) NADH Reoxidation

III. Metabolic Changes Related to Ethanol Metabolism
A. Lipid Metabolism
1. Fatty Liver
 a) Increased Synthesis of Fatty Acids
 b) Increased Synthesis of Hepatic Triglycerides
 c) Decreased Oxidation of Fatty Acids
 d) Fatty Acid Mobilization from Depot Fat
 e) Hepatic Synthesis and Release of Lipoproteins
2. Ketogenesis
3. Cholesterol and Bile Acid Metabolism
B. Protein Metabolism
1. Acute Conditions
2. Chronic Conditions
C. Carbohydrate Metabolism
1. Hyperglycemia, Hypoglycemia and Gluconeogenesis
2. Galactose Metabolism
D. Effects of Ethanol on Membrane Functions
E. Collagen Metabolism

References

Enzymology of Highly Differentiated Hepatocellular Carcinomas
STANLEY GOLDFARB and HENRY C. PITOT
The seven chapters of this volume of Frontiers of Gastrointestinal Research reflect the progress made in hepatic enzymology.
The liver microsomal hydroxylation enzyme system is reviewed in considerable detail. This system, so intimately linked to the metabolism of drugs by the liver, is a matter of considerable medical and environmental importance.

Significant changes have occurred within the past few years in the appreciation of vitamin D and associated metabolites. In the second chapter the effects of enzyme-inducing agents on vitamin D metabolism are discussed in the light of current theories.

The role of 5'-nucleotidase in gastroenterology is reviewed in chapter three. This enzyme, or this group of enzymes, is closely connected to physiologic and pathophysiologic conditions in the liver as well as other tissues. In this chapter attention is also called to the risks of placing too great a value on a single biochemical determination, especially when the true significance of this determination is debatable.

Alkaline phosphatase has been, and is being used extensively in clinical practice. In chapter four the current knowledge is placed in perspective against its clinical application.

Progress in the understanding of hepatic alcohol metabolism has been significant during the past few years. In chapter five the intricate relationships of alcohol metabolism and the hepatic enzyme systems are depicted.

In chapter six the behavior of hepatic tumor cells is reviewed. The variation of metabolic activities, especially as it affects the various enzyme systems, is discussed in considerable detail. Although much has been learned, it is also obvious, as the authors point out, that much of the metabolic behavior of these tumors remains an enigma.

Foreword XIII

In the final chapter the current theories on hepatic bilirubin metabolism are discussed. Changes have occurred in these theories within the past few years. Both the researcher and the clinician ought to be cognizant of these changing concepts.

Although not complete in every detail, an undertaking beyond the scope of this publication, the material contained in this volume, together with the liberal reference material, should provide the reader with a good understanding about current concepts in the various aspects of hepatic enzymology.

LEO VAN DER REIS, MD