Contents

Foreword ... XII

The Liver Microsomal Hydroxylation Enzyme System.

Induction and Properties of the Functional Components

ANTHONY Y. H. Lu, RONALD KUNTZMAN and A. H. CONNEY

1. Introduction ... 2

II. Overall Reaction ... 2

III. Factors Affecting the Hydroxylation System 4

IV. Functional Components 4

A. Earlier Studies with Liver Microsomes 4

B. Recent Studies with the Reconstituted System 5

C. Involvement of Cytochrome b5 in Microsomal Hydroxylation 6

V. Properties of Cytochrome P-450 8

A. Membrane-Bound Cytochrome P-450 8

1. Occurrence ... 8

2. Spectral Properties 8

B. Solubilization and Purification of Cytochrome P-450 10

1. General Comments 10

2. Physical Properties of Partially Purified Cytochrome P-450 11

3. Spectral Properties of Partially Purified Cytochrome P-450 11

4. Catalytic Activity of Partially Purified Cytochrome P-450 12

VI. Properties of NADPH-Cytochrome c Reductase 13

VII. Lipid Factor ... 13

VIII. Induction of the Microsomal Hydroxylation Enzyme System 14

A. General Characterization of Induction 14

B. Factors Affecting Induction 15

1. Different Inducers 15

2. Different Species and Strains of Animals 15

3. Other Factors ... 17

C. Phenobarbital versus 3-Methylcholanthrene 17

IX. One Cytochrome P-450 or Many? 18

A. Microsomal Studies 18

B. Studies from a Reconstituted System 20

Acknowledgment .. 22

References ... 23

Enzyme-Inducing Agents and their Effect on Vitamin D Metabolism

GRAHAM NEALE

1. Introduction ... 33

II. Vitamin D ... 34
II. Metabolism of Ethanol and Enzymatic Pathways

Contents IX
A. Organs Involved in Alcohol Metabolism. ... 152
B. Enzymatic Pathways of Alcohol Metabolism. 152
1. Alcohol Dehydrogenase (EC 1.1.1.1) ... 153
 a) Biochemical Properties .. 153
 b) Role of ADH in Alcohol Metabolism in vivo. Hepatic Redox Changes 155
2. Catalase (EC 1.11.1.6) ... 156
3. Microsomal Systems for Ethanol Oxidation 157
 a) Evidence for Activity in vitro of a Microsomal Pathway for Alcohol
 Metabolism .. 157
 b) Evidence for Microsomal Alcohol Oxidation in vivo 159
 c) Effects of Ethanol on Drug Metabolism 160
4. Relative Importance and Possible Interrelations of the Different Ethanol-Oxidizing
 Mechanisms .. 161
5. Acetaldehyde and Acetate Oxidation .. 161
C. Rate of Ethanol Metabolism ... 163
1. Methods Measuring Alcohol Elimination 163
2. Factors Influencing Ethanol Metabolic Velocity after Chronic Alcohol
 Intake .. 164
 a) Catalase and MEOS Activities after Chronic Alcohol Intake. 166
 b) ADH Activity and Rate of Ethanol Oxidation 167
 c) NADH Reoxidation .. 168
III. Metabolic Changes Related to Ethanol Metabolism 172
A. Lipid Metabolism ... 172
1. Fatty Liver ... 172
 a) Increased Synthesis of Fatty Acids 173
 b) Increased Synthesis of Hepatic Triglycerides 173
 c) Decreased Oxidation of Fatty Acids 173
 d) Fatty Acid Mobilization from Depot Fat 173
 e) Hepatic Synthesis and Release of Lipoproteins............... 174
2. Ketogenesis ... 174
3. Cholesterol and Bile Acid Metabolism 174
B. Protein Metabolism ... 175
1. Acute Conditions .. 175
2. Chronic Conditions .. 175
C. Carbohydrate Metabolism .. 176
1. Hyperglycemia, Hypoglycemia and Gluconeogenesis 176
2. Galactose Metabolism ... 177
D. Effects of Ethanol on Membrane Functions 177
E. Collagen Metabolism .. 178
References .. 178
Enzymology of Highly Differentiated Hepatocellular Carcinomas
STANLEY GOLDFARB and HENRY C. PITOT
I. Introduction. .. 244
II. Bilirubin Metabolism. .. 244
III. Methods Used to Study Bilirubin Conjugation in vitro ... 246
 1. Preparation of the Enzyme. ... 246
 2. Donor Substrate. .. 247

Contents XI
3. Acceptor Substrate Bilirubin ... 250
4. Determination and Analysis of Reaction Products. 251
5. Bivalent Cations. 253
6. pH ... 253
7. Proposed Standard Assay Procedure.. 253

IV. Kinetic Properties of UDP-Glucuronyltransferase 256
 1. Effect of Microsomal Phospholipid Composition. .. 256
 2. Effect of Glucuronides - 'Coupled Transglucuronidation' 257
 3. Effect of Nucleotides ... 258
4. Role of Thiol Groups .. 259
5. Proposed Kinetic Mechanism ... 259

V. Discussion of Relevant Data. ... 260
 1. Comparison of Different UDP-Glycosyltransferases 260
 2. Multiplicity of UDP-Glucuronyltransferase with Regard to the Acceptor
 Substrate .. 262
 3. Species and Strain Differences ... 263
 4. Differences Attributable to Sex ... 263
 5. Activation in vitro ... 263
 6. Stimulation by Administration in vivo of so-called Enzyme-Inducing Agents 269
 7. Mono- and Diconjugate Formation .. 271
 8. Endogenous Conjugation ... 271
9. Solubilisation ... 272
10. Extrahepatic Conjugation.............................. .. 272
11. Hepatic Bilirubin UDP-Glucuronyltransferase in Disease 273
12. Conjugation in Neonates ... 275
13. Hormonal Influence ... 276
14. Inhibition of Bilirubin UDP-Glucuronyltransferase: Importance for in vivo
 Situations ... 276
15. Conjugation Rates in vitro as Compared to in vivo Metabolisation 278
16. Studies on Isolated Rat Hepatoma Cells .. 279
Acknowledgments ... 279
References .. 279
Subject Index ... 293

Foreword
The seven chapters of this volume of Frontiers of Gastrointestinal
Research reflect the progress made in hepatic enzymology.
The liver microsomal hydroxylation enzyme system is reviewed in considerable detail. This system, so intimately linked to the metabolism of drugs by the liver, is a matter of considerable medical and environmental importance.

Significant changes have occurred within the past few years in the appreciation of vitamin D and associated metabolites. In the second chapter the effects of enzyme-inducing agents on vitamin D metabolism are discussed in the light of current theories.

The role of 5'-nucleotidase in gastroenterology is reviewed in chapter three. This enzyme, or this group of enzymes, is closely connected to physiologic and pathophysiologic conditions in the liver as well as other tissues. In this chapter attention is also called to the risks of placing too great a value on a single biochemical determination, especially when the true significance of this determination is debatable.

Alkaline phosphatase has been, and is being used extensively in clinical practice. In chapter four the current knowledge is placed in perspective against its clinical application.

Progress in the understanding of hepatic alcohol metabolism has been significant during the past few years. In chapter five the intricate relationships of alcohol metabolism and the hepatic enzyme systems are depicted.

In chapter six the behavior of hepatic tumor cells is reviewed. The variation of metabolic activities, especially as it affects the various enzyme systems, is discussed in considerable detail. Although much has been learned, it is also obvious, as the authors point out, that much of the metabolic behavior of these tumors remains an enigma.

Foreword XIII

In the final chapter the current theories on hepatic bilirubin metabolism are discussed. Changes have occurred in these theories within the past few years. Both the researcher and the clinician ought to be cognizant of these changing concepts.

Although not complete in every detail, an undertaking beyond the scope of this publication, the material contained in this volume, together with the liberal reference material, should provide the reader with a good understanding about current concepts in the various aspects of hepatic enzymology.

LEO VAN DER REIS, MD