«Die vergleichende Anatomie, Histologie, Architektonik und Embryologie des Zentralnervensystems bildet ferner einen umfangreichen Zweig und zugleich eine unentbehrliche Methode der neurobiologischen Forschung. Sie verrät die zahlreichen Wege, durch welche die Evolution der Nervensysteme der verschiedenen Tiersorten im phylogenetischen Zusammenhang ihre heutige Verschiedenartigkeit zustande gebracht hat. Vertieft man sich dabei genügend in den Zusammenhang von Form und Funktion, so gelangt man in eine wunderbare Welt der Harmonie zwischen Geist und lebendem Nervensystem...

Wer vergleichende Anatomie des Nervensystems sagt, sagt also auch vergleichende Physiologie - Psychologie und - Biologie, und das ist ein Gebiet, aus welchem die künftige Forschung mit vollen Zügen schöpfen kann...

Dass der Mensch für den Menschen sich Zunächst interessiert, ist verzeihlich und naheliegend. Hat er aber einmal erkannt, dass er nur ein Glied in der Tierreihe bildet und dass sein Hirn, das Organ seiner Seele, aus dem Tiergehirn und somit aus der Tierseele stammt, so muss er doch zur Erkenntnis gelangen, dass das Studium der Neurobiologie dieser seiner Verwandten das grösste Licht auf sein eigenes Nerven- und Seelenleben werfen muss.»

August Forel

(«Die Aufgaben der Neurobiologie»)

Preface

The lectures on the central nervous system of vertebrates, given by the author during his first sojourn in Japan, 1924-1927 (Taishô 13 to Shôwa 2), intended to foster the interest in comparative neurologic studies based upon the morphologic principles established by the Gegenbaur or Jena-Heidelberg School of Comparative Anatomy. Notwithstanding their introductory and elementary nature, these lectures,
published by Gustav Fischer, Jena, in 1927, included a number of advanced as well as independent concepts, and represented, as it were, the outline of a further program.

Despite various vicissitudes, and although I found the prevailing intellectual climate in the realm of biologic sciences rather unfavorable to the pursuit of investigations related to the domain of classical morphology, I have, tant bien que mal, carried on with my studies as originally planned, and propose to summarize my viewpoints in the present series, designed to represent a general survey, and projected to comprise five separate volumes, of which the first two are now completed. It can easily be seen that the present series follows closely the outline of my old 'Vorlesungen', meant to stress 'die grossen Hauptlinien der Hirnarchitektur und die allgemeinen Gesetzmässigkeiten, welche in Bau und Funktion des Nervensystems erkannt werden können'.

Comparative anatomy of the vertebrate central nervous system requires a very broad and comprehensive background of biological data, evaluated by means of a rational, consistent, and appropriate logical procedure. Without the relevant unifying concepts, comparative neurology becomes no more than a trivial description of apparently unrelated miscellaneous and bewildering configurational varieties, loosely held together by a string of hazy 'functional' notions.

A perusal of the multitudinous literature dealing with matters involving the morphologic aspects of neurobiology reveals, to the critical observer, considerable confusion as regards many fundamental questions.

For this reason, the present attempt at an integrated overall presentation includes a somewhat detailed scrutiny of problems concerning the significance of configuration and configurational variety with respect to evolution and to correlated reasonably 'natural' taxonomic classifications. Because comparative anatomy of the central nervous system embodies the morphological clues required to infer the presumable phylogenetic evolution of the brain, a number of general questions referring to ontogenetic evolution are critically considered: it is evident that both the inferred phylogenetic sequences and the observable ontogenetic sequences represent evolutionary processes suitable for a comparison outlining the obtaining invariants.

Moreover, the comparison of organic forms involves procedures closely related to analysis situs. Thus, a simplified and elementary
discussion of the here relevant principles of topology was deemed necessary.
Finally, since vertebrate comparative anatomy and vertebrate evolution,
including the origin of vertebrates, cannot be properly assessed
in default of an at least moderately adequate familiarity with the vast
array of invertebrate organic forms, a general and elementary survey
of invertebrate comparative neurology from the vertebrate neurobiologist's
viewpoint, that is as seen by an 'outsider' with a modicum of
first-hand acquaintance, has been included as volume two of this series.
The approximately 20 pages and 12 figures dealing with this matter in
my 1927 'Vorlesungen' have thus, of necessity, become rather expanded.
US N.I.H. Grant NB 4999, which is acknowledged with due
appreciation, made possible the completion of Volumes 1 and 2 of this
series, and, for the time being, the continuation of these studies, by
supporting a 'Research Professorship' established to that effect, following
my superannuation, at the Woman's Medical College of Pennsylvania.
Concluding this preamble to the present series, I may state with
Cicero (De oratore, III, 61, 228): 'Edidi quae potui, non ut volui sed ut me
temporis angustiae coegerunt; scitum est enim causam conferre in tempus, cum
afferre plura si cupias non queas.'

H.K.

Foreword to Volume 5, Part I

The large amount of material to be dealt with in volume 5 of this
series made it necessary, as in the case of volume 3, to publish the
present volume in two separate parts. Accordingly, the first part of
volume 5, containing chapters XII and XIII, deals with the Vertebrate
Diencephalon and Telencephalon. In chapter XIII, of which section 10
concerns the basic morphologic and functional aspects of the endbrain
in Mammals, only the overall features of the diversified Mammalian
telencephalic surface configuration and of the Mammalian cerebral
cortex are here considered.
With regard to receptor structures, and supplementing chapter VII
of volume 3/II as well as section 1, chapter IX of volume 4 (otic
apparatus), the optic and the olfactory organs are passed under review
in appropriate sections of chapters XII and XIII.
The second part of volume 5, containing chapters XIV, XV, and
XVI, deals with details of Mammalian telencephalic surface morphology
and of cerebral cortex, including thereto related relevant 'interdisciplinary'
topics, and, in a similar manner, with the Vertebrate
neuraxis as a whole.
It should again be stated that the bibliographies appended to the chapters of this series are meant to be selective, but should easily enable those interested in further particulars to find the required additional references.

As in the preceding volumes, numerous duly credited illustrations were taken from the public domain of published scientific literature also including contributions by my collaborators and myself. Illustrations without credit reference are previously unpublished originals from my own studies.

As before, I am obliged to the Medical College of Pennsylvania for the facilities of my 'Laboratory of Morphologic Brain Research', and particularly grateful to the Alumnae Association of the whilom Woman's Medical College of Pennsylvania, which includes my many former students, for the continued generous contributions to the funds necessary for my work.

H.K.

Table of Contents of the Present Volume

Volume 5 Part I: Derivatives of the Prosencephalon: Diencephalon and Telencephalon

XII. The Diencephalon.. 1
1. General Pattern and Basic Mechanisms...................... 1
 A. The Longitudinal Zonal System, its Principal Griseal Derivatives and their Main Communication Channels............. 1
 B. The Eye and its Peripheral Optic Ganglion (Retina)........ 24
 C. Basal and Dorsal Midline Structures (Hypophysial Complex, Saccus Vasculosus, Epiphysial Complex)................... 89
2. Cyclostomes... 138
3. Selachians... 160
4. Ganoids and Teleosts; Latimeria.............................. 175
5. Dipnoans.. 206
6. Amphibians... 217
7. Reptiles.. 246
8. Birds.. 270
9. Mammals (Including Man)................................... 292
10. References to Chapter XII.................................. 434
XIII. The Telencephalon.. 461
1. General Pattern and Overall Functional Significance........ 461
2. Some Remarks on the Olfactory Structures.................. 474
3. Cyclostomes ... 543
4. Selachians .. 552
5. Ganoids and Teleosts; Latimeria 568
6. Dipnoans .. 591
7. Amphibians ... 602
8. Reptiles .. 622
9. Birds ... 650
10. Mammals (Including Man) 686
11. References to Chapter XIII 859

Table of Contents of the Complete Work

Volume 1 Propaedeutics to Comparative Neurology

I. Introductory Remarks

1. General Functional Aspects
2. Reflexes and Coordination
3. Feedback, Servomechanisms, Black Boxes, and Transducers; Intrinsic Neural Activities
4. One-one, One-many, and Many-one Transformations, Common Final Path, Overlap, Redundancy
5. Stable and Ultrastable Systems: Plasticity
6. Stereotype and Learned Behavior, Storage, Engraphy, Conditioned Reflex
7. Problems of Neurology
8. References to Chapter I

II. Problems of Comparative Anatomy: Variety and Interrelations of Organic Forms

1. Plants and Animals
2. Problems of Taxonomy
3. Significance of ‘Species’ and Related Concepts
4. Problems of Evolution: Historical Remarks
5. Problems of Evolution: Some Remarks Concerning Their Contemporary Status
6. Problems of Evolution: Geologic and Palaeontologic Aspects
7. Problems of Evolution: The Genetic Aspects
8. Problems of Evolution: Ecology and Geographic Distribution
10. Problems of Evolution: Taxonomic Aspects
11. Problems of Evolution: Anatomical Aspects
12. References to Chapter II

III. Problems of Comparative Anatomy: The Rigorous Formanalytic Approach and its Application to Comparative Neurology

1. The Concept of Morphology and of the Morphologic Pattern (Bauplan)
2. Significance of Topology in the Formanalytic Approach
3. Definitions of Homology and Analogy
4. Symmetry and Promorphology

Table of Contents of the Complete Work XI

5. Elements or Subsets of a Morphologic Pattern: Grundbestandteile and Formbestandteile
6. Evolution of Morphologic Pattern in Ontogeny
7. Morphology and Phylogeny
8. The Two Main Principles or Aspects of Comparative Brain Anatomy
9. References to Chapter III

Volume 2 Invertebrates and Origin of Vertebrates

IV. Remarks on the Nervous System of Invertebrates, the Theories Concerning Origin of the Nervous System, and the Theories on the Origin of Vertebrates
1. General Comments
2. Coelenterates and Echinoderms
3. Phylogenetic Theories Concerning Origin of Nervous System
4. Platyhelminthes and Nematodhelminthes
5. Miscellaneous 'Minor Groups'
6. Annelida
7. Tardigrada
8. Arthropoda
10. Mollusca
12. General Remarks on the Nervous Elements and Structures of Invertebrates with Respect to Vertebrate Analogies
13. Transition to the Vertebrate Pattern; The 'Minor' Chordata: Hemichorda and Urochorda
14. Theories on the Origin of Vertebrates
15. References to Chapter IV

Volume 3 Part I: Structural Elements: Biology of Nervous Tissue

V. The Structural Elements of the Vertebrate Nervous System
1. Histogenesis; Taxonomy of Nervous Tissue; Matrix Remnants: The Subependymal Cell Plate
2. Nerve Cells (Perikarya)
3. Ependyma and Neuroglia; The Problem of Ground Substance
4. Nerve Fibers and their Connections; Synapses
5. Mesodermal Tissue; Choroid Plexus; Blood-Brain and Brain-Liquor Barriers; Paraependymal 'Organs' or Structures
6. Evaluation of Data Obtained by Electron-Microscopy
7. Theoretical Formulations: The Neuron Concept and the Concept of Neurobiotaxis

XII Table of Contents of the Complete Work

8. Remarks on the Biology of Nervous Tissue: Electrical and Biochemical Aspects in the Transmission of Signals; Neuronal Flow; Neurosecretion; Chemical Specificities; Degeneration and Regeneration
9. Remarks on the Biology of Nervous Tissue: Its Taxonomic Status in Classification Based upon Change; Constant Cell Numbers; Aging of Nervous Tissue; Behavior in Tissue Cultures; Neoplastic Growth
10. References to Chapter V

Volume 3 Part II: Overall Morphologic Pattern

VT. Morphologic Pattern of the Vertebrate Neuraxis
1. Morphogenesis
 A. Some General Aspects of Vertebrate Morphogenesis
 B. Some Relevant Configurational Features Related to Morphogenesis of the Vertebrate Neuraxis
 C. Disturbances of Morphogenesis: Some Teratologic Aspects
2. Primary Longitudinal Zones (Floor, Basal, Alar, and Roof Plate)
3. Neuromery; Definitive Main Subdivisions
4. The Deuterencephalon and the Transformations of its Primary Zonal System
5. The Diencephalon and its Secondary Zonal System
6. The Telencephalon and its Secondary Zonal System
7. Meninges, Liquor, and Blood Vessels
8. Some Remarks on Brain Weights and Apposite Topics
9. References to Chapter VI

VII. The Vertebrate Peripheral Nervous System and its Morphological Relationship to the Central Neuraxis

1. Remarks on the Peripheral Nerve Endings
2. Spinal Nerves; Morphologic Problems of Neuromuscular Relationship
3. Cranial or Cerebral Nerves and the Head Problem
4. The Secondary Deuterencephalic Longitudinal Zones and the Concept of Functional Nerve Components
5. Electrical Nerves and Organs; Bioluminescence
6. The Vegetative Nervous System
7. References to Chapter VII

Volume 4 Spinal Cord and Deuterencephalon

Vm. The Spinal Cord

1. General Pattern
2. Intrinsic and Extrinsic Mechanisms (L. Edinger's Eigenapparat and Verbindungsapparat); Some Comments on the Reflex Concept and on Myelogeny

Table of Contents of the Complete Work XIII

3. Amphioxus
4. Cyclostomes
5. Selachians
6. Ganoids and Teleosts; Crossopterygians: Latimeria
7. Dipnoans
8. Amphibians
9. Reptiles
10. Birds
11. Mammals (Including Man)
12. References to Chapter VIII

IX. Medulla Oblongata (and Pons)

1. General Pattern and Basic Mechanisms; The Meaning of the Terms 'Deuterencephalon' and 'Brain Stem'
2. Some Remarks on the so-called Formatio Reticularis Tegmenti
3. Cyclostomes
4. Selachians
5. Ganoids and Teleosts; Latimeria
6. Dipnoans
7. Amphibians
8. Reptiles
9. Birds
10. Mammals (Including Man)
11. References to Chapter IX

X. The Cerebellum

1. General Pattern and Basic Mechanisms
2. Cyclostomes
3. Selachians
4. Ganoids and Teleosts; Latimeria
5. Dipnoans
6. Amphibians
7. Reptiles
8. Birds
9. Mammals (Including Man)
10. References to Chapter X

XI. The Mesencephalon

1. General Pattern and Basic Mechanisms; The Meaning of ‘Tegmentum’ and ‘Tectum’
2. Cyclostomes
3. Selachians

XIV Table of Contents of the Complete Work

4. Ganoids and Teleosts; Latimeria
5. Dipnoans
6. Amphibians
7. Reptiles
8. Birds
9. Mammals (Including Man)
10. References to Chapter XI

Volume 5 Part I: Derivatives of the Prosencephalon: Diencephalon and Telencephalon
XII. The Diencephalon

1. General Pattern and Basic Mechanisms
 A. The Longitudinal Zonal System, its Principal Grisal Derivatives and their Main Communication Channels
 B. The Eye and its Peripheral Optic Ganglion (Retina)
 C. Basal and Dorsal Midline Structures (Hypophysial Complex, Saccus Vasculosus, Epiphysial Complex)

2. Cyclostomes
3. Selachians
4. Ganoids and Teleosts; Latimeria
5. Dipnoans
6. Amphibians
7. Reptiles
8. Birds
9. Mammals (Including Man)
10. References to Chapter XII

. The Telencephalon

1. General Pattern and Overall Functional Significance
2. Some Remarks on the Olfactory Structures
3. Cyclostomes
4. Selachians
5. Ganoids and Teleosts; Latimeria
6. Dipnoans
7. Amphibians
8. Reptiles
9. Birds
10. Mammals (Including Man)
11. References to Chapter XIII

Table of Contents of the Complete Work XV

Volume 5 Part II: Mammalian Telencephalon:
Surface Morphology and Cerebral Cortex
The Vertebrate Neuraxis as a Whole

XIV. Surface Morphology of the Mammalian Telencephalon

1. General Remarks; Lissencephalic and Gyrencephalic Brains; Volume Surface
and Size Relations; The Domestication Problem
2. Remarks on the Non-Primate Fissuration Pattern
3. The Primate Fissuration Pattern
4. The Problem of the so-called Sulcus Lunatus
5. Remarks on Attempts at Anthropological Interpretations of Telencephalic Fissuration Pattern and on Some Apposite Topics Concerning the Human Mind in Social, Cultural, and Historical Perspective
6. Concluding Remarks on the General Evaluation of Mammalian Telencephalic Surface Patterns
7. References to Chapter XIV

XV. The Mammalian Cerebral Cortex

1. Ontogeny and Presumptive Phylogeny
2. The Basic Zonal Pattern and the Fundamental Cortical Types: Hippocampal Cortex, Parahippocampal Cortex, Neocortex, Anterior Piriform Lobe Cortex, and Basal Cortex
3. Problems of Structure and Architectonics
4. Problems of Localization and Parcellation, Particularly Concerning the Neocortex
5. Fiber Systems
6. Functional Problems, Including Engraphy and Consciousness
7. References to Chapter XV

XVI. The Central Nervous System as a Whole: Typologie Features in the Vertebrate Series

1. General Remarks
2. Cyclostomes
3. Selachians
4. Ganoids and Teleosts
5. Dipnoans
6. Amphibians
7. Reptiles
8. Birds
9. Mammals
10. Some Phylogenetic Comments
11. References to Chapter XVI

Subject and Author Index to Volumes 1-5