Gerontological Aspects of Eye Research

Interdisciplinary Topics in Gerontology

Vol. 13

Series Editor
H.P. von Hahn, Basel

S. Karger Basel Mnchen Paris London New York Sydney

Selected papers of the 18th Meeting of the Association for Eye Research, Bonn, July 14-16, 1977

Gerontological Aspects of Eye Research

Volume Editor
O. Hockwin, Bonn

In cooperation with
H Bloemendal, Nijmegen; G. Duncan, Norwich; S. Lerman, Atlanta, Ga.;
C. Phillips, Edinburgh, and H. Rink, Bonn

165 figures and 53 tables, 1978

S. Karger Basel Mnchen Paris London New York Sydney

Interdisciplinary Topics in Gerontology

Vol. 11: Multidisciplinary Gerontology:
A Structure for Research in Gerontology in a Developed Country
Editor: 1. R. Mackay, Melbourne

Workshop on Ageing of the Lens, Bonn 1977
Editor: O. Hockwin, Bonn
XI + 296 p., 170 fig., 47 tab., 1978. ISBN 3-8055-2876-0

Cataloging in Publication
Selected papers of the 18th meeting of the Association for Eye Research, Bonn, 1977
Gerontological aspects of eye research / volume editor, O. Hockwin, in cooperation with H. Bloemendal ... (et al.).
(Interdisciplinary topics in gerontology ; v. 13)
W1 11679 .13/WW 260 W926g 1977
ISBN 3-8055-2877-9

All rights reserved.
No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.

Copyright 1978 by S. Karger AG, 4011 Basel (Switzerland), Arnold-Bcklin-Strasse 25
Printed in Switzerland by Thr AG Offsetdruck, Pratteln
ISBN 3-8055-2877-9

Gerontological Aspects of Eye Research

This volume contains the 27 selected papers presented at the 18th Meeting of the Association for Eye Research, Bonn 1977. Papers presented at the Workshop `Ageing of the Lens', held after the Meeting, are published as `Lens Ageing and Development of Senile Cataracts', forming Vol. 12 in the series Interdisciplinary Topics in Gerontology (f contents see pp. VII + VIII).

Contents

Preface IX
Introduction X

Weale, R.A. (London): The Eye and Aging 1
Perkins, E.S. (London): Uveitis in Older Age Groups 21
Wurster, U. and Hoffmann (Hannover): Influence of Age and Species on Retinal Lactate Dehydrogenase Isoenzymes 26
Haerngen, N.J. van and Glaslus, E. (Amsterdam): Erythrocyte Aggregation in Relation to Thrombotic Disorders of the Retina 40
Cremer-Bartels, G. (Munster): Age Dependence of Melatonin Biosynthesis in Rat Retina 46
Chtoralia, G.; Baumann, H.; Kremer, F., and Dragomirescu, V. (Bonn): Permeability...
Contents VI

Hockwin, O.; Rast, F.; Rink, J.; Mnnghiff, J., and Twenhven, . (Bonn): Water Content of Lenses of Different Species 102
Klethi, J. and Nordmann, J. (Strasbourg): Problems Concerning Aging of the Lens ... 251
Bovine and Human - and Senile Cataract 143
Lerman, S. and Borkman, R.F. (Atlanta, Ga.): Photochemistry and Lens Aging (Discussion included) 154
Haard, P.M.M. van; Krames, J.A.; Hoenders, HJ, and Wollensak, J. (Nijmegen): Development of Non-Disulphide Covalent Cross-Links in Nuclear Cataractogenesis 212
Preface IX

Nordmann, J. (Strasbourg): Opening Remarks 1

Courtois, Y.; Counis, M.F.; Laurent, M.; Simonneau, L., and Treton, J. (Paris): In vitro Cultivation of Bovine, Chick and Human Epithelial Lens Cells in Ageing Studies 2

Mungyer, G. and Jap, P.H.K. (Nijmegen): Cellular Aging in Cultures of Calf Lens Epithelium13

Rink, H. (Bonn): Lens Epithelial Cells in vitro 24

Francois, J.; Victoria-Troncoso, V.; Cansu, , and Victoria-Ihler, A. (Ghent): Culture of the Lens Epithelium in Senile Cataract 34

Bloemendal, . and Vermorken, A.J.M. (Nijmegen): Protein Synthesis in Isolated and Cultured Epithelia from Calf Lenses 41

Rink, H.; Twenhoeven, H., and Hockwin, O. (Bonn): Antero-Posterior Cation Gradients in Bovine Lenses during Aging 80

Contents VIII

Kremer, F. and Koch, H.-R. (Bonn): Effect of X-Rays and Carotid Ligature on Lens Transparency and on Various Biochemical Parameters in Rat Lenses 119

Bours, J.; Gruber, L.; Hockwin, Q., and Harris, J. (Bonn): The Crystallins of the Rat Lens with Triparanol-Induced Cataracts, also Related to Ageing 127

Rathbun, W.B.; Hough, M.; Gruber, L., and Harris, J.E. (Minneapolis, Minn.): The Reversal of Triparanol-Induced Cataract in the Rat. V. Activity Levels of ATPase and Three Enzymes of Glutathione Metabolism 132

Keller, H. W. and Koch, H.-R. (Bonn): Experimental Arabinose Cataracts 141

Ohrloff, C. (Bonn): Age Changes of Enzyme Properties in Crystalline Lens 158

Banroques, J.; Skala, H.; Schapiro, F., and Dreyfus, J.C. (Paris): The Aging of Enzymes in Eye Lens 180

Korte, . and Hockwin, O. (Bonn): In vitro Adaptation to Environmental Changes of Young and Old Bovine Lenses 187

Bours, J. (Bonn): Isoelectric Focusing and Isotachophoresis of Rat Lens Crystallins in Dependence on Age 196

Bours, J.; Wieck, A., and Hockwin, O. (Bonn): Gel Filtration Chromatography of Cristallins and Nucleic Acids from Different Parts of the Bovine Lens in Dependence on Age 205

Siezen, R.J. and Hoenders, H.J. (Nijmegen): Architecture of ?-Crystallin: Surface Probing by Limited Proteolysis 221

Hegningen, R. van (Oxford): Lens Neutral Proteinase 232

Swanson, A.A. and Albers, . (Charleston, S.C.): Proteolytic Activity of Lens Proteins and Gangliosides in Mammalian Lens 241

Rink, H. (Bonn): The Water Content in Bovine Lenses during Aging 271

Duncan, G. and Delamere, N.A. (Norwich): Electrophysiology of the Mammalian Lens 278

Subject Index 291

Preface
Most of clinical medicine, including ophthalmology, is applied to the very young and the elderly, especially the very old. The increasing proportion and absolute numbers of the elderly in so-called advanced countries will tend to increase the large amount of time the ophthalmologist already devotes to their diseases, especially `senile cataract' - which is one of the commonest causes of disability they suffer. Should we just shrug our shoulders and say that cataract is due to old age and think no further, as some used to do in atherosclerosis, coronary thrombosis, hypertension, hemiplegia and arthritis? Most of us would say `no', and ask why so many old people have clear lenses and why `senile cataract' is not a single disease. Even if there is an important hereditary basis in many cases of senile cataract, as I suspect, environmental influences on this relatively insulated organ probably affect it or may alone determine the development of a cataract.

Chemical and other analyses of cataractous human lenses removed at operation may be expected to provide some insight into the disease - just as postmortem examinations have contributed much to our understanding of systemic disease. Correlation of these findings with morphology observed in vivo, and with the general health of the patient, may tell us more. Some of the papers in this volume relate such observations.

But the human animal has a long life span, a highly variable environment and diet, and can hardly be subject to long-term experimental manipulation. Many of the papers in this volume describe observations on rats and their lenses which constitute a very useful animal model for human cataracts.

Clinical research is becoming increasingly dependent on basic scientists to collaborate in defining questions, constructing hypotheses and planning investigations. Lens research is a subject in which there is already evidence of important results from such collaboration. And the lens, avascular and with a limited range of chemical constituents and accessible to observation in vivo, seems an ideal organ for investigations into ageing.

I would commend this volume to a wide audience of clinicians, not only ophthalmologists, and basic scientists for two reasons: the intrinsic interest and importance of the papers and the indication of some advances in an increasingly important field of research - ageing.

Colbert I. Phillips, Edinburgh

Introduction

On behalf of the local organizing committee, it is a great honour to welcome you most cordially as participants of the 18th Meeting of the Association for Eye Research in Bonn. I feel a special welcome is due to our colleagues from the United States and Japan who have taken the trouble of a long voyage...
to be with us to discuss the special problems of the age changes of the eye. Tackling this issue is not novel and the Association for Eye Research had already considered the matter as a key program at a former congress. However, the manner of dealing with age research in ophthalmology has been subject to certain changes. From the clinical observations of age signs a special form of experimental gerontology of the eye resulted and all over the world research teams are more and more involved with the mechanisms leading to age changes on the cellular, molecular or organ level. Naturally, the clinical ophthalmologist is keen to learn the progress of such research.

Today, the ophthalmologist has to deal with more geriatric problems than any other specialist. This is due to the following facts: through general prophylactic measures the number of inflammatory diseases of the eye, such as scrofulism, tuberculosis, lues, pox, trachoma, gonoblennorrhea and ulcus serpens could, at least in Europe, be reduced to a minimum, and further, the life expectancy of the individual is greatly increased.

To outward view, it seems that ophthalmology lags somewhat behind where results in gerontological problems are concerned, although ophthalmologists have already at a very early date tried to elucidate age changes of the eye and have taken great pains to determine and document these changes by visual and technical means, but the impression is not true. The higher life expectancy is mainly due to the fact that acute mortal conditions can often be eliminated, not, however, to a postponement or abandonment of processes of aging of unknown mechanisms and origin.

We all know the most common geriatric diseases in our aged patients: cataracta senilis and senile macula degeneration.

Introduction XI

In the first case we are well able to help. In the last 20 years techniques of cataract surgery have been greatly improved and there is hardly any risk involved. However, the ultimate goal is the elucidation of the causes and mechanisms leading to opacification and their prevention. With respect to the senile macula degeneration, there is still no definite possibility to influence the incident, and we can but hope that new methods in angiology will one day enable to cope with flow disturbances in the complicated region of the uveal and the retinal circulation.

However, geriatric problems of the eye extend to other diseases besides the two mentioned above. More important than the investigations on our special ophthalmo-geriatric problems is the possibility to use the eye as a model for studies on the processes of ageing in general, which may enable us to test theories on age processes by our means of investigation. This is also the aim of the 1977 Congress of the Association for Eye Research in Bonn, which I want to
open with my best wishes for a successful and productive scientific meeting.

Erich Weigelin, Bonn