Contents

Introduction IX
Authors' Introduction XI

1. Protection and Defence Mechanisms of the Respiratory System (Z. Tomori) 1
 1.1 Protection Mechanisms 1
 1.1.1 Nonreflex Protection 2
 1.1.2 Protective Reflexes of the Airways 3
 1.2 Defence Mechanisms 4
 1.2.1 Defensive Reflexes of the Airways 4
 1.2.2 Pathological Reflexes of the Airways 6
 1.2.3 Other Reflexes 7
 1.2.4 Nonreflex Pulmonary Defence 8
 1.2.4.1 Mucociliary Clearance 8
 1.2.4.2 Alveolo-bronchiolar Clearance 10
 1.2.4.3 Immunological Defence 12

2. Cough 15
 2.1 Physiology of the Cough Reflex (Z. Tomori) 15
 2.1.1 The Reflex Arc of Cough 15
2.111 Receptors 15
2.112 The Afferent Pathway 20
2.113 The Cough Centre 22
2.114 The Efferent Pathway and Effectors 25
2.12 Mechanisms of Cough 26
2.121 The Components of Cough 29
2.1211 Deep Initial Inspiration 29
2.1212 Active Expiratory Effort 31
2.1213 Increase Preceded by Decrease in Intrathoracic Pressure 34
2.1214 Special Function of the Glottis 39
2.1215 Bronchoconstriction 46
2.1216 Transpulmonary and Transmural Pressure Changes . 54

Contents VI

2.1217 Dynamic Compression of the Airways 55
2.1218 Acceleration of the Airflow in the Respiratory Tract 59
2.1219 Increase in Tidal Volume 62
2.121.10 Explosive Sound Phenomena and Stridor 62
2.122 Effects and Consequences of Cough 63
2.1221 Expectoration 63
2.1222 Changes in Breathing Pattern 66
2.1223 Changes in Breathing Mechanics 67
2.1224 Changes in Ventilation 69
2.1225 Changes in Respiratory and Blood Gases and in Acid-base Balance . 69
2.1226 Changes in Cardiovascular Function 74
2.2 Methodology of the Cough Reflex (J. Korpáš) 81
2.21 Experimental Methods for Inducing Cough in Animals 81
2.211 Mechanical Methods 82
2.212 Chemical Methods 83
2.213 Electrical Methods 88
2.22 Choice of Laboratory Animals for Inducing Cough 90
2.23 Experimental Methods for Inducing Cough in Man 94
2.24 The Recording of Cough 97
2.241 The Recording of Cough in Laboratory Animals 97
2.242 The Recording of Cough in Man 101
2.25 Evaluation of Cough 104
2.3 Findings on Cough in Phylogenesis (J. Korpáš) 105
2.31 Cough in the Mouse and the Rat 105
2.32 Cough in the Rabbit 105
2.33 Cough in the Guinea Pig 107
2.34 Cough in the Cat (Laryngopharyngeal and Tracheobronchial Types of
2.35 Cough in the Dog 114
2.4 Findings on Cough in Ontogenesis (J. Korpáš) 115
2.5 Suppression of Cough (J. Korpáš) 118
2.51 Thermic Suppression 118
2.511 Cough in Hypothermia 118
2.512 Effect of the Inhalation of Cold Air on Cough in Healthy Cats 119
2.513 Effect of the Inhalation of Cold Air on Cough in Cats with Experimental Inflammation of the Airways 121
2.514 Effect of Hyperthermia on Cough 122
2.52 Pharmacological Suppression 123
2.521 Centrally Acting Antitussives 123
2.522 Peripherally Acting Antitussives 128
2.6 The Pathophysiology of the Cough Reflex (J. Korpáš) 133
2.61 Definition of a Pathological Cough Reflex 134
2.62 Pathological Effect of Cough on the Organism 136
2.63 Cough as a Sign of Disease 142
2.631 Aetiology of Cough 142
2.632 Increase in Cough Susceptibility 146
2.633 Decrease in Cough Susceptibility 148

Contents VII

2.634 Types of Cough 149
2.7 Experimental Models of Diseases of the Respiratory System (J. Korpáš) 153
2.71 The Authors' Models of Inflammations of the Airways and Lungs 160
2.711 Model of Acute Inflammation of the Airways for Short-term Study in Anaesthetized Cats 160
2.712 Model of Acute Inflammation of the Airways for Long-term Study in Unanaesthetized Cats 161
2.713 Model of Acute Inflammation of the Respiratory System in Anaesthetized Rats 166
2.714 Model of Bronchopneumonia for Long-term Study 167
2.715 Spontaneous Bronchopneumonia in Cats 168
2.716 Local Inflammation of the Trachea 172
2.717 Models of Experimental Pleurisy in Unanaesthetized Cats 173
2.7171 Pleurisy Induced with Lugol's Solution 173
2.7172 Turpentine-induced Pleurisy 173
2.7173 Talc-induced Pleurisy 175
2.7174 Hair-induced Pleurisy 175
2.7175 Pleurisy Induced with Glass Beads 175
2.718 Model of Experimental Pleurisy for Short-term Study in Anaesthetized
Rats 176
2.719 Model of Experimental Hydrothorax 176
2.8 Qualitative and Quantitative Changes in Cough under Pathological Conditions (J. Korpáš) 177
2.81 Qualitative Changes in Cough 177
2.82 Quantitative Changes in Cough 179

3. The Expiration Reflex (J. Korpáš) 189
3.1 Basic Findings on the Expiration Reflex in Cats 190
3.2 Differentiation of the Expiration Reaction and the Cough Reflex 194
3.21 Differentiation by Means of Anaesthesia and Codeine 195
3.22 Differentiation on the Basis of Elicitability on the First Days of Postnatal Life 197
3.23 Differentiation on the Basis of Changes under Pathological Conditions 199
3.3 The Significance and Role of the Expiration Reflex 199
3.4 The Reflex Arc of the Expiration Reflex 203
3.5 The Expiration Reflex in Other Laboratory Animals 208
3.51 The Dog 208
3.52 The Guinea Pig 208
3.53 The Rabbit 209
3.54 The Rat 209
3.55 The Mouse 211
3.6 The Expiration Reflex in Man 213
3.7 Changes in the Expiration Reflex under Pathological Conditions 215
3.71 Changes in the Expiration Reflex During Experimental Inflammation of the Vocal Folds and the Airways 215
3.72 Changes in the Expiration Reflex in Pathological Conditions of the Larynx in Man 216

Contents VIII

4. Sneezing (Z. Tomori) 218
4.1 The Incidence of Sneezing 218
4.2 The Reflex Arc 219
4.3 Sneezing Mechanisms 220
4.31 Components of Sneezing 221
4.4 Effects and Consequences of Sneezing 222

5. The Sniff-like Aspiration Reflex (Z. Tomori) 224
5.1 Sniffing 224
5.2 The Sniff-like Aspiration Reflex in Cats 226
5.21 The Reflex Arc 227
The last few decades have seen considerable development and intensification of experimental research in the physiological sciences. The many partial problems of physiology and pathophysiology led to their being studied in such detail, and so complexly, that it in turn proved necessary to integrate them and to interpret the combined results systematically in special monographs. A striking example of this is the present publication, in which the authors have summed up the present level of knowledge on the physiology and pathophysiology of cough and other protective and defensive reflexes of the airways.
Both the authors – the one a pathophysiologist, the other a physiologist – have long devoted themselves to the resolution of these problems and during a period of almost 30 years they have carried out a tremendous number of experimental analyses. The course of their work has followed existing modern methods on the one hand and the development of new methodological approaches of their own on the other.

It was precisely this rich arsenal of techniques which enabled the authors not only to make detailed analyses of single respiratory reflexes with reference to their control mechanisms, but also to investigate their dynamics and mechanics and to modify their course by various treatments, as well as their effects on haemodynamics, the oxygenation of the blood and its pressure changes in the body cavities. They did not confine their research to acute experiments on adult animals of only one species in these analyses, but extended them to phylogenetic and ontogenetic analyses and to long-term experiments on unanaesthetized and nonimmobilized animals. In this association they elaborated experimental models of respiratory tract diseases which have a very frequent incidence in man.

Introduction X

It is now more than 150 years since the bulbar centre which regulates respiration was discovered, but since then there have been many thousand experiments investigating the motor activity of breathing. It is a remarkable achievement that the authors of this monograph should have succeeded in discovering two previously unknown respiratory reflexes – the aspiration reflex and the expiration reflex. The newly discovered reflexes are analysed in detail in the monograph and are compared with other reflex respiratory movements.

Today, research on respiratory functions and analyses of protective and defensive reflexes of the respiratory system, together with experimental modelling of airway diseases, are highly topical subjects, in view of the progressive increase in air pollution problems. In this respect the present publication is of basic importance both for physiologists and for pathophysiologists and medical practitioners, from the aspect of prevention, diagnostics and treatment.

J. Antal
Professor of Physiology
Bratislava

XI

Authors' Introduction
Almost 30 years have gone by since Bucher and Jacot's "Zum Mechanismus des Hustens" first came into our hands. We found the mechanisms of cough so interesting that our orientation in these problems has persisted every since.

We began our own investigations together with Prof. I. Ivano at the Department of Experimental Pathology of the Faculty of Medicine, Šafárik University, Kosice, without any previous experience in this field. Initially, of course, we encountered various difficulties, but in time we acquired both good collaborators and proper technical equipment. We found particularly good conditions at the Faculty of Medicine in Martin, where we were appointed head of the Department of Physiology and head of the Department of Pathological Physiology and Pharmacology, respectively and were able, in our further research, to call on the aid of other laboratories as well as our own. We were thus able to study cough complexly, from both the theoretical and the clinical aspect.

In the present study we inevitably came up against other defensive reflexes of the airways which attracted our attention. In addition, we discovered two more reflexes, which we termed the aspiration and the expiration reflex, according to their respective functions.

The findings made in the course of these investigations piled up so alarmingly that we were obliged to work up them in a survey. Another factor which prompted this step was the absence of any comprehensive publication on the physiology and pathology of cough in the world literature. One of the reasons why we felt it our duty to remedy this deficiency is that diseases of the respiratory system are a serious public health care problem throughout the world. Cough is a frequent – and often the only – sign of these diseases. Other defensive reflexes likewise unquestionably play role in their origination and development. These were the factors that gave rise to the Slovak edition of our monograph, published in 1975. Since it was written a great deal has been added to our knowledge, both here and in other countries, with the result that the present English edition is almost twice the size of the original. We also considered it necessary to sum up the most important studies in the world literature which deal with these questions and this is reflected in very many quotations of the various studies in question.

We hope that our book will prove useful to theoreticians for the further development of this field of science, and to clinicians for the identification and treatment of diseases of the respiratory organs.

In conclusion, we should like to thank all those who took part in our
experiments or helped us in other ways. We are especially grateful to the many workers, in Czechoslovakia and other countries, whose advice and encouragement during courses of study, mutual visits and congresses, etc. contributed to the analysis of the various questions involved. We are also deeply indebted to Prof. J. G. Widdicombe and his University Laboratory of Physiology, Oxford, now to the Department of Physiology, St. George’s Hospital Medical School, London, to Academician V. V. Parin, Academician A. M. Chernukh, Prof. A. M. Kulik and their Institute of Normal and Pathological Physiology, now the Institute of General Pathology and Pathological Physiology of the Academy of Medical Sciences of the USSR, Moscow, and to Prof. W. A. Karczewski and his Institute of Neurophysiology of the Polish Academy of Sciences, Medical Research Centre, Warsaw.

We extend our thanks to our families, colleagues and friends for their loyal support and last, but not least, to the staffs of the VEDA, Publishing House of the Slovak Academy of Sciences in Bratislava and the SNP Printing Works in Martin, who made the publication of this book possible.

Martin, May 1979 The authors